IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v262y2017i2p693-707.html
   My bibliography  Save this article

Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems

Author

Listed:
  • Ciomek, Krzysztof
  • Kadziński, Miłosz
  • Tervonen, Tommi

Abstract

We present a set of heuristic approaches for selecting pair-wise elicitation questions in an interactive process for multiple criteria choice problems. Our heuristics aim at minimizing the number of question–answer iterations leading to the univocal recommendation of the Decision Maker’s (DM’s) most preferred alternative. To identify the myopically best question at a given stage of interaction, the proposed approaches ask the DM to compare a pair of alternatives that contributes to the greatest reduction of uncertainty, with respect to the indication of the best alternative by all compatible value functions. This uncertainty is measured either in terms of the number of potentially optimal alternatives, or the entropy of first rank acceptabilities, while assuming different a priori unknown probabilities of the DM’s answers. We discuss results from the extensive experiments on artificially generated and real-world decision problems. Depending on the complexity of the considered problem instances, we either perform a comprehensive analysis of the question–answer interaction trees constructed by the heuristics, or traverse their paths randomly by simulating a numerous set of decision policies. We demonstrate that the greatest benefits from using our questioning procedures can be observed for problems involving numerous alternatives and few criteria, and when the applied piece-wise linear value functions consist of a small number of characteristic points. The study allows us to identify two approaches that perform well in the average or the least advantageous elicitation scenario.

Suggested Citation

  • Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.
  • Handle: RePEc:eee:ejores:v:262:y:2017:i:2:p:693-707
    DOI: 10.1016/j.ejor.2017.04.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717303545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacquet-Lagreze, E. & Siskos, J., 1982. "Assessing a set of additive utility functions for multicriteria decision-making, the UTA method," European Journal of Operational Research, Elsevier, vol. 10(2), pages 151-164, June.
    2. DeShazo, J. R. & Fermo, German, 2002. "Designing Choice Sets for Stated Preference Methods: The Effects of Complexity on Choice Consistency," Journal of Environmental Economics and Management, Elsevier, vol. 44(1), pages 123-143, July.
    3. Lahdelma, Risto & Hokkanen, Joonas & Salminen, Pekka, 1998. "SMAA - Stochastic multiobjective acceptability analysis," European Journal of Operational Research, Elsevier, vol. 106(1), pages 137-143, April.
    4. de Almeida, Jonatas Araujo & Costa, Ana Paula Cabral Seixas & de Almeida-Filho, Adiel Teixeira, 2016. "A new method for elicitation of criteria weights in additive models: Flexible and interactive tradeoffAuthor-Name: de Almeida, Adiel Teixeira," European Journal of Operational Research, Elsevier, vol. 250(1), pages 179-191.
    5. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, December.
    6. Kadziński, Miłosz & Tervonen, Tommi, 2013. "Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements," European Journal of Operational Research, Elsevier, vol. 228(1), pages 169-180.
    7. Hurson, Christian & Siskos, Yannis, 2014. "A synergy of multicriteria techniques to assess additive value models," European Journal of Operational Research, Elsevier, vol. 238(2), pages 540-551.
    8. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    9. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2008. "Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 191(2), pages 416-436, December.
    10. Risto Lahdelma & Pekka Salminen, 2010. "Stochastic Multicriteria Acceptability Analysis (SMAA)," International Series in Operations Research & Management Science, in: Matthias Ehrgott & José Rui Figueira & Salvatore Greco (ed.), Trends in Multiple Criteria Decision Analysis, chapter 0, pages 285-315, Springer.
    11. van Valkenhoef, Gert & Tervonen, Tommi & Postmus, Douwe, 2014. "Notes on ‘Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis’," European Journal of Operational Research, Elsevier, vol. 239(3), pages 865-867.
    12. Julie Stal-Le Cardinal & Vincent Mousseau & Jun Zheng, 2011. "An Application of Constrained Multicriteria Sorting to Student Selection," International Series in Operations Research & Management Science, in: Ahti Salo & Jeffrey Keisler & Alec Morton (ed.), Portfolio Decision Analysis, chapter 0, pages 213-240, Springer.
    13. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    14. Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
    15. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models," Omega, Elsevier, vol. 71(C), pages 27-45.
    16. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    17. Siskos, Eleftherios & Tsotsolas, Nikos, 2015. "Elicitation of criteria importance weights through the Simos method: A robustness concern," European Journal of Operational Research, Elsevier, vol. 246(2), pages 543-553.
    18. Durbach, Ian & Lahdelma, Risto & Salminen, Pekka, 2014. "The analytic hierarchy process with stochastic judgements," European Journal of Operational Research, Elsevier, vol. 238(2), pages 552-559.
    19. Weber, Martin & Borcherding, Katrin, 1993. "Behavioral influences on weight judgments in multiattribute decision making," European Journal of Operational Research, Elsevier, vol. 67(1), pages 1-12, May.
    20. Liu, Jiapeng & Liao, Xiuwu & Yang, Jian-bo, 2015. "A group decision-making approach based on evidential reasoning for multiple criteria sorting problem with uncertainty," European Journal of Operational Research, Elsevier, vol. 246(3), pages 858-873.
    21. Bernard Roy, 2005. "Paradigms and Challenges," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 3-24, Springer.
    22. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    23. Sam Park, Kyung & Sang Lee, Kyung & Seong Eum, Yun & Park, Kwangtae, 2001. "Extended methods for identifying dominance and potential optimality in multi-criteria analysis with imprecise information," European Journal of Operational Research, Elsevier, vol. 134(3), pages 557-563, November.
    24. Durbach, Ian N., 2009. "The use of the SMAA acceptability index in descriptive decision analysis," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1229-1237, August.
    25. Jacquet-Lagreze, Eric & Siskos, Yannis, 2001. "Preference disaggregation: 20 years of MCDA experience," European Journal of Operational Research, Elsevier, vol. 130(2), pages 233-245, April.
    26. Holloway, Hillary A. & White III, Chelsea C., 2003. "Question selection for multi-attribute decision-aiding," European Journal of Operational Research, Elsevier, vol. 148(3), pages 525-533, August.
    27. Siskos, Y. & Spyridakos, A. & Yannacopoulos, D., 1999. "Using artificial intelligence and visual techniques into preference disaggregation analysis: The MIIDAS system," European Journal of Operational Research, Elsevier, vol. 113(2), pages 281-299, March.
    28. van Valkenhoef, Gert & Tervonen, Tommi, 2016. "Entropy-optimal weight constraint elicitation with additive multi-attribute utility models," Omega, Elsevier, vol. 64(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2022. "Bayesian ordinal regression for multiple criteria choice and ranking," European Journal of Operational Research, Elsevier, vol. 299(2), pages 600-620.
    2. Cinelli, Marco & Kadziński, Miłosz & Gonzalez, Michael & Słowiński, Roman, 2020. "How to support the application of multiple criteria decision analysis? Let us start with a comprehensive taxonomy," Omega, Elsevier, vol. 96(C).
    3. Goers, Jana & Horton, Graham, 2023. "Combinatorial multi-criteria acceptability analysis: A decision analysis and consensus-building approach for cooperative groups," European Journal of Operational Research, Elsevier, vol. 308(1), pages 243-254.
    4. Kadziński, Miłosz & Ghaderi, Mohammad & Dąbrowski, Maciej, 2020. "Contingent preference disaggregation model for multiple criteria sorting problem," European Journal of Operational Research, Elsevier, vol. 281(2), pages 369-387.
    5. Zheng, Jun & Lienert, Judit, 2018. "Stakeholder interviews with two MAVT preference elicitation philosophies in a Swiss water infrastructure decision: Aggregation using SWING-weighting and disaggregation using UTAGMS," European Journal of Operational Research, Elsevier, vol. 267(1), pages 273-287.
    6. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    7. Miłosz Kadziński & Magdalena Martyn, 2021. "Enriched preference modeling and robustness analysis for the ELECTRE Tri-B method," Annals of Operations Research, Springer, vol. 306(1), pages 173-207, November.
    8. Eduarda Asfora Frej & Adiel Teixeira Almeida & Ana Paula Cabral Seixas Costa, 2019. "Using data visualization for ranking alternatives with partial information and interactive tradeoff elicitation," Operational Research, Springer, vol. 19(4), pages 909-931, December.
    9. Adiel Teixeira Almeida & Eduarda Asfora Frej & Lucia Reis Peixoto Roselli, 2021. "Combining holistic and decomposition paradigms in preference modeling with the flexibility of FITradeoff," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 7-47, March.
    10. Szádoczki, Zsombor & Bozóki, Sándor & Tekile, Hailemariam Abebe, 2022. "Filling in pattern designs for incomplete pairwise comparison matrices: (Quasi-)regular graphs with minimal diameter," Omega, Elsevier, vol. 107(C).
    11. Kadziński, Miłosz & Ciomek, Krzysztof, 2021. "Active learning strategies for interactive elicitation of assignment examples for threshold-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 293(2), pages 658-680.
    12. Ghaderi, Mohammad & Kadziński, Miłosz, 2021. "Incorporating uncovered structural patterns in value functions construction," Omega, Elsevier, vol. 99(C).
    13. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    14. Arwa Khannoussi & Alexandru-Liviu Olteanu & Christophe Labreuche & Patrick Meyer, 2022. "Simple ranking method using reference profiles: incremental elicitation of the preference parameters," 4OR, Springer, vol. 20(3), pages 499-530, September.
    15. Wachowicz, Tomasz & Roszkowska, Ewa, 2022. "Can holistic declaration of preferences improve a negotiation offer scoring system?," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1018-1032.
    16. de Almeida Filho, Adiel T. & Clemente, Thárcylla R.N. & Morais, Danielle Costa & de Almeida, Adiel Teixeira, 2018. "Preference modeling experiments with surrogate weighting procedures for the PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 264(2), pages 453-461.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models," Omega, Elsevier, vol. 71(C), pages 27-45.
    2. Ciomek, Krzysztof & Ferretti, Valentina & Kadzinski, Milosz, 2018. "Predictive analytics and disused railways requalification: insights from a Post Factum Analysis perspective," LSE Research Online Documents on Economics 85922, London School of Economics and Political Science, LSE Library.
    3. Vetschera, Rudolf, 2017. "Deriving rankings from incomplete preference information: A comparison of different approaches," European Journal of Operational Research, Elsevier, vol. 258(1), pages 244-253.
    4. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    5. Zheng, Jun & Lienert, Judit, 2018. "Stakeholder interviews with two MAVT preference elicitation philosophies in a Swiss water infrastructure decision: Aggregation using SWING-weighting and disaggregation using UTAGMS," European Journal of Operational Research, Elsevier, vol. 267(1), pages 273-287.
    6. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    7. Corrente, S. & Figueira, J.R. & Greco, S., 2021. "Pairwise comparison tables within the deck of cards method in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 291(2), pages 738-756.
    8. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    9. Hurson, Christian & Siskos, Yannis, 2014. "A synergy of multicriteria techniques to assess additive value models," European Journal of Operational Research, Elsevier, vol. 238(2), pages 540-551.
    10. Kadziński, Miłosz & Ciomek, Krzysztof, 2021. "Active learning strategies for interactive elicitation of assignment examples for threshold-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 293(2), pages 658-680.
    11. Marinakis, Vangelis & Doukas, Haris & Xidonas, Panos & Zopounidis, Constantin, 2017. "Multicriteria decision support in local energy planning: An evaluation of alternative scenarios for the Sustainable Energy Action Plan," Omega, Elsevier, vol. 69(C), pages 1-16.
    12. Kadziński, Miłosz & Cinelli, Marco & Ciomek, Krzysztof & Coles, Stuart R. & Nadagouda, Mallikarjuna N. & Varma, Rajender S. & Kirwan, Kerry, 2018. "Co-constructive development of a green chemistry-based model for the assessment of nanoparticles synthesis," European Journal of Operational Research, Elsevier, vol. 264(2), pages 472-490.
    13. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    14. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    15. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    16. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2024. "Inducing a probability distribution in Stochastic Multicriteria Acceptability Analysis," Omega, Elsevier, vol. 123(C).
    17. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    18. van Valkenhoef, Gert & Tervonen, Tommi, 2016. "Entropy-optimal weight constraint elicitation with additive multi-attribute utility models," Omega, Elsevier, vol. 64(C), pages 1-12.
    19. Costa, Ana Sara & Corrente, Salvatore & Greco, Salvatore & Figueira, José Rui & Borbinha, José, 2020. "A robust hierarchical nominal multicriteria classification method based on similarity and dissimilarity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 986-1001.
    20. Kadziński, Miłosz & Tervonen, Tommi, 2013. "Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements," European Journal of Operational Research, Elsevier, vol. 228(1), pages 169-180.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:262:y:2017:i:2:p:693-707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.