IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v32y2018i8d10.1007_s11269-018-1957-x.html
   My bibliography  Save this article

Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model

Author

Listed:
  • K. Cheng

    (Northeast Agricultural University)

  • Q. Fu

    (Northeast Agricultural University
    Collaborative Innovation Centre of Promote Grain Production in Heilongjiang Province
    Northeast Agricultural University)

  • J. Meng

    (Northeast Agricultural University)

  • T. X. Li

    (Northeast Agricultural University
    Collaborative Innovation Centre of Promote Grain Production in Heilongjiang Province
    Northeast Agricultural University)

  • W. Pei

    (Northeast Agricultural University)

Abstract

To objectively analyze the effect of the water resources carrying capacity (WRCC) on sustainable regional development, a case study of Heilongjiang Province, China, is conducted. With a focus on the coordinated development of the water resources system, 16 indices are selected to establish an index-based WRCC evaluation system. In addition, based on the index values, initial values are obtained using a fuzzy combined weighting method. The WRCC evaluation levels are objectively generated using cloud model, and the temporal and spatial evolution of the WRCC in the study area is analyzed. The obstacle degree is used to analyze quantitatively the restraint relationship of each index to the carrying capacity. The present study classifies the WRCC into five evaluation levels: level I ([0.01, 0.21]), level II ([0.21, 0.37]), level III ([0.37, 0.47]), level IV ([0.47, 0.63]), and level V ([0.63, 0.82]). When determining the WRCC of each of the 13 observation points, the trend is consistent with both social and economic development, indicating that the evaluation criteria have a high degree of credibility. The main influencing factors of the WRCC also change, between 1999 and 2007, the irrigation coverage, amount of water resources per unit area, and gross domestic product per capita were the main factors, between 2008 and 2014, the agricultural water pollution index, population density, and percentage of industrial wastewater discharge compliant with consent conditions were the main factors. In addition, between 1999 and 2014, the ecological environment gradually became the main subsystem that limits the WRCC.

Suggested Citation

  • K. Cheng & Q. Fu & J. Meng & T. X. Li & W. Pei, 2018. "Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2767-2781, June.
  • Handle: RePEc:spr:waterr:v:32:y:2018:i:8:d:10.1007_s11269-018-1957-x
    DOI: 10.1007/s11269-018-1957-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-018-1957-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-018-1957-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zaobao Liu & Jianfu Shao & Weiya Xu & Yongdong Meng, 2013. "Prediction of rock burst classification using the technique of cloud models with attribution weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 549-568, September.
    2. Qiang Fu & Fanli Gong & Qiuxiang Jiang & Tianxiao Li & Kun Cheng & He Dong & Xiaosong Ma, 2014. "Risk assessment of the city water resources system based on Pansystems Observation-Control Model of Periphery," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1899-1912, April.
    3. Subhasis Giri & Zeyuan Qiu & Tony Prato & Biliang Luo, 2016. "An Integrated Approach for Targeting Critical Source Areas to Control Nonpoint Source Pollution in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5087-5100, November.
    4. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.
    5. Junfeng Yang & Kun Lei & Soonthiam Khu & Wei Meng, 2015. "Assessment of Water Resources Carrying Capacity for Sustainable Development Based on a System Dynamics Model: A Case Study of Tieling City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 885-899, February.
    6. Harris, Jonathan M. & Kennedy, Scott, 1999. "Carrying capacity in agriculture: global and regional issues," Ecological Economics, Elsevier, vol. 29(3), pages 443-461, June.
    7. Li, Mo & Guo, Ping & Singh, Vijay P. & Yang, Gaiqiang, 2016. "An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation," Agricultural Water Management, Elsevier, vol. 177(C), pages 10-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Wei & Ran Wang & Xin Zhuo & Haoying Feng, 2021. "Research on Comprehensive Evaluation and Coordinated Development of Water Resources Carrying Capacity in Qingjiang River Basin, China," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    2. Penglong Wang & Yao Wei & Fanglei Zhong & Xiaoyu Song & Bao Wang & Qinhua Wang, 2022. "Evaluation of Agricultural Water Resources Carrying Capacity and Its Influencing Factors: A Case Study of Townships in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(5), pages 1-24, May.
    3. Qian-Qian Wang & Cheng-Xin Geng & Lu Wang & Ting-Ting Zheng & Qing-Hong Jiang & Tong Yang & Yong-Qi Liu & Zhe Wang, 2023. "Water Conservation and Ecological Water Requirement Prediction of Mining Area in Arid Region Based on RS-GIS and InVEST: A Case Study of Bayan Obo Mine in Baotou, China," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    4. Xiao-Kang Wang & Yi-Ting Wang & Jian-Qiang Wang & Peng-Fei Cheng & Lin Li, 2020. "A TODIM-PROMETHEE Ⅱ Based Multi-Criteria Group Decision Making Method for Risk Evaluation of Water Resource Carrying Capacity under Probabilistic Linguistic Z-Number Circumstances," Mathematics, MDPI, vol. 8(7), pages 1-27, July.
    5. Qiang Zou & Li Liao & Hui Qin, 2020. "Fast Comprehensive Flood Risk Assessment Based on Game Theory and Cloud Model Under Parallel Computation (P-GT-CM)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1625-1648, March.
    6. Boyang Sun & Xiaohua Yang & Yipeng Zhang & Xiaojuan Chen, 2019. "Evaluation of Water Use Efficiency of 31 Provinces and Municipalities in China Using Multi-Level Entropy Weight Method Synthesized Indexes and Data Envelopment Analysis," Sustainability, MDPI, vol. 11(17), pages 1-11, August.
    7. Yuan Lei & Chen Guoping & Wang Jiasheng & Zhao Junsan & Yang Kun, 2022. "A quantitative analysis method for the degree of coupling coordination between drinking water carrying capacity and population spatial aggregation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11392-11423, September.
    8. Yumin Wang & Xian’e Zhang & Yifeng Wu, 2020. "Eutrophication Assessment Based on the Cloud Matter Element Model," IJERPH, MDPI, vol. 17(1), pages 1-19, January.
    9. Ming Zhong & Jiao Wang & Liang Gao & Kairong Lin & Yang Hong, 2019. "Fuzzy Risk Assessment of Flash Floods Using a Cloud-Based Information Diffusion Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2537-2553, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Cheng & Qiang Fu & Song Cui & Tian-xiao Li & Wei Pei & Dong Liu & Jun Meng, 2017. "Evaluation of the land carrying capacity of major grain-producing areas and the identification of risk factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 263-280, March.
    2. Jianwei Wang & Tianling Qin & Xizhi Lv & Yongxin Ni & Qiufen Zhang & Li Ma, 2023. "Study of Optimal and Joint Allocations of Water and land Resources for Multiple Objectives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1241-1256, February.
    3. Yutong Tian & Chunhui Li & Yujun Yi & Xuan Wang & Anping Shu, 2020. "Dynamic Model of a Sustainable Water Resources Utilization System with Coupled Water Quality and Quantity in Tianjin City," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    4. Yumin Wang & Xian’e Zhang & Yifeng Wu, 2020. "Eutrophication Assessment Based on the Cloud Matter Element Model," IJERPH, MDPI, vol. 17(1), pages 1-19, January.
    5. Qianjin Dong & Xu Zhang & Yalin Chen & Debin Fang, 2019. "Dynamic Management of a Water Resources-Socioeconomic-Environmental System Based on Feedbacks Using System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2093-2108, April.
    6. Yuantian Sun & Guichen Li & Sen Yang, 2021. "Rockburst Interpretation by a Data-Driven Approach: A Comparative Study," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    7. Krausmann, Fridolin & Erb, Karl-Heinz & Gingrich, Simone & Lauk, Christian & Haberl, Helmut, 2008. "Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints," Ecological Economics, Elsevier, vol. 65(3), pages 471-487, April.
    8. Weijing Ma & Lihong Meng & Feili Wei & Christian Opp & Dewei Yang, 2020. "Sensitive Factors Identification and Scenario Simulation of Water Demand in the Arid Agricultural Area Based on the Socio-Economic-Environment Nexus," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    9. Kehao Sheng & Zhongkun Tang & Chao Sun & Shiyu Wang, 2022. "Comprehensive Evaluation Of Water Resources Carrying Capacity Of Yangtze River Economic Belt Based On Topsis-Aism Model," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 6(2), pages 57-64, May.
    10. Keyzer, M.A. & Merbis, M.D. & Pavel, I.F.P.W. & van Wesenbeeck, C.F.A., 2005. "Diet shifts towards meat and the effects on cereal use: can we feed the animals in 2030?," Ecological Economics, Elsevier, vol. 55(2), pages 187-202, November.
    11. Boxin Wang & Bin Wang & Xiaobing Zhao & Jiao Li & Dasheng Zhang, 2023. "Study and Evaluation of Dynamic Carrying Capacity of Groundwater Resources in Hebei Province from 2010 to 2017," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
    12. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    13. Balogh, Peter & Ertsey, Imre & Szucs, Istvan, 2009. "Answer to the challenges of the 21st century in the Hungarian pig sector," 2009 Conference, August 16-22, 2009, Beijing, China 51027, International Association of Agricultural Economists.
    14. Bao Wenchao & Chen Beier & Yan Minghui, 2024. "Analysis of Multi-Factor Dynamic Coupling and Government Intervention Level for Urbanization in China: Evidence from the Yangtze River Economic Belt," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 18(1), pages 1-18, January.
    15. Moon, Wanki, 2011. "Is agriculture compatible with free trade?," Ecological Economics, Elsevier, vol. 71(C), pages 13-24.
    16. Ali Reza Nafarzadegan & Hassan Vagharfard & Mohammad Reza Nikoo & Ahmad Nohegar, 2018. "Socially-Optimal and Nash Pareto-Based Alternatives for Water Allocation under Uncertainty: an Approach and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2985-3000, July.
    17. Zhang, Yu & Ren, Chongfeng & Zhang, Hongbo & Xie, Zhishuai & Wang, Yashi, 2022. "Managing irrigation water resources with economic benefit and energy consumption: an interval linear multi-objective fractional optimization model under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 272(C).
    18. Chen, You-hua & Chen, Mei-xia & Mishra, Ashok K., 2020. "Subsidies under uncertainty: Modeling of input- and output-oriented policies," Economic Modelling, Elsevier, vol. 85(C), pages 39-56.
    19. Yue, Qiong & Zhang, Fan & Zhang, Chenglong & Zhu, Hua & Tang, Yikuan & Guo, Ping, 2020. "A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 230(C).
    20. Jonathan M. Harris & Neva R. Goodwin, "undated". "Reconciling Growth and Environment," GDAE Working Papers 03-03, GDAE, Tufts University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:32:y:2018:i:8:d:10.1007_s11269-018-1957-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.