IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i4p903-924.html
   My bibliography  Save this article

Modelling natural disturbances in forest ecosystems: a review

Author

Listed:
  • Seidl, Rupert
  • Fernandes, Paulo M.
  • Fonseca, Teresa F.
  • Gillet, François
  • Jönsson, Anna Maria
  • Merganičová, Katarína
  • Netherer, Sigrid
  • Arpaci, Alexander
  • Bontemps, Jean-Daniel
  • Bugmann, Harald
  • González-Olabarria, Jose Ramon
  • Lasch, Petra
  • Meredieu, Céline
  • Moreira, Francisco
  • Schelhaas, Mart-Jan
  • Mohren, Frits

Abstract

Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable forest ecosystem management. Quantitative models are frequently employed to tackle the complexities associated with disturbance processes. Here we review the wide variety of approaches to modelling natural disturbances in forest ecosystems, addressing the full spectrum of disturbance modelling from single events to integrated disturbance regimes. We applied a general, process-based framework founded in disturbance ecology to analyze modelling approaches for drought, wind, forest fires, insect pests and ungulate browsing. Modelling approaches were reviewed by disturbance agent and mechanism, and a set of general disturbance modelling concepts was deduced. We found that although the number of disturbance modelling approaches emerging over the last 15 years has increased strongly, statistical concepts for descriptive modelling are still largely prevalent over mechanistic concepts for explanatory and predictive applications. Yet, considering the increasing importance of disturbances for forest dynamics and ecosystem stewardship under anthropogenic climate change, the latter concepts are crucial tool for understanding and coping with change in forest ecosystems. Current challenges for disturbance modelling in forest ecosystems are thus (i) to overcome remaining limits in process understanding, (ii) to further a mechanistic foundation in disturbance modelling, (iii) to integrate multiple disturbance processes in dynamic ecosystem models for decision support in forest management, and (iv) to bring together scaling capabilities across several levels of organization with a representation of system complexity that captures the emergent behaviour of disturbance regimes.

Suggested Citation

  • Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:4:p:903-924
    DOI: 10.1016/j.ecolmodel.2010.09.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010005272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.09.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rammig, Anja & Fahse, Lorenz, 2009. "Simulating forest succession after blowdown events: The crucial role of space for a realistic management," Ecological Modelling, Elsevier, vol. 220(24), pages 3555-3564.
    2. Kirsten Thonicke & Wolfgang Cramer, 2006. "Long-term Trends in Vegetation Dynamics and Forest Fires in Brandenburg (Germany) Under a Changing Climate," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 283-300, May.
    3. Weber, Pascale & Rigling, Andreas & Bugmann, Harald, 2008. "Sensitivity of stand dynamics to grazing in mixed Pinus sylvestris and Quercus pubescens forests: A modelling study," Ecological Modelling, Elsevier, vol. 210(3), pages 301-311.
    4. Ogris, Nikica & Jurc, Maja, 2010. "Sanitary felling of Norway spruce due to spruce bark beetles in Slovenia: A model and projections for various climate change scenarios," Ecological Modelling, Elsevier, vol. 221(2), pages 290-302.
    5. Lee, Sang Dong & Park, Sohyun & Park, Young-Seuk & Chung, Yeong-Jin & Lee, Buom-Young & Chon, Tae-Soo, 2007. "Range expansion of forest pest populations by using the lattice model," Ecological Modelling, Elsevier, vol. 203(1), pages 157-166.
    6. Scheller, Robert M. & Domingo, James B. & Sturtevant, Brian R. & Williams, Jeremy S. & Rudy, Arnold & Gustafson, Eric J. & Mladenoff, David J., 2007. "Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution," Ecological Modelling, Elsevier, vol. 201(3), pages 409-419.
    7. Kurz, W.A. & Dymond, C.C. & White, T.M. & Stinson, G. & Shaw, C.H. & Rampley, G.J. & Smyth, C. & Simpson, B.N. & Neilson, E.T. & Trofymow, J.A. & Metsaranta, J. & Apps, M.J., 2009. "CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards," Ecological Modelling, Elsevier, vol. 220(4), pages 480-504.
    8. Bouchard, Mathieu & Pothier, David, 2008. "Simulations of the effects of changes in mean fire return intervals on balsam fir abundance, and implications for spruce budworm outbreaks," Ecological Modelling, Elsevier, vol. 218(3), pages 207-218.
    9. Schelhaas, M.J. & Kramer, K. & Peltola, H. & van der Werf, D.C. & Wijdeven, S.M.J., 2007. "Introducing tree interactions in wind damage simulation," Ecological Modelling, Elsevier, vol. 207(2), pages 197-209.
    10. Reimoser, Susanne & Partl, Ernst & Reimoser, Friedrich & Vospernik, Sonja, 2009. "Roe-deer habitat suitability and predisposition of forest to browsing damage in its dependence on forest growth—Model sensitivity in an alpine forest region," Ecological Modelling, Elsevier, vol. 220(18), pages 2231-2243.
    11. Gillet, François, 2008. "Modelling vegetation dynamics in heterogeneous pasture-woodland landscapes," Ecological Modelling, Elsevier, vol. 217(1), pages 1-18.
    12. Seidl, Rupert & Baier, Peter & Rammer, Werner & Schopf, Axel & Lexer, Manfred J., 2007. "Modelling tree mortality by bark beetle infestation in Norway spruce forests," Ecological Modelling, Elsevier, vol. 206(3), pages 383-399.
    13. Krivtsov, V. & Vigy, O. & Legg, C. & Curt, T. & Rigolot, E. & Lecomte, I. & Jappiot, M. & Lampin-Maillet, C. & Fernandes, P. & Pezzatti, G.B., 2009. "Fuel modelling in terrestrial ecosystems: An overview in the context of the development of an object-orientated database for wild fire analysis," Ecological Modelling, Elsevier, vol. 220(21), pages 2915-2926.
    14. Keane, Robert E. & Drury, Stacy A. & Karau, Eva C. & Hessburg, Paul F. & Reynolds, Keith M., 2010. "A method for mapping fire hazard and risk across multiple scales and its application in fire management," Ecological Modelling, Elsevier, vol. 221(1), pages 2-18.
    15. David Gray, 2008. "The relationship between climate and outbreak characteristics of the spruce budworm in eastern Canada," Climatic Change, Springer, vol. 89(3), pages 447-449, August.
    16. Chubaty, Alex M. & Roitberg, Bernard D. & Li, Chao, 2009. "A dynamic host selection model for mountain pine beetle, Dendroctonus ponderosae Hopkins," Ecological Modelling, Elsevier, vol. 220(9), pages 1241-1250.
    17. Zhu, Jun & Rasmussen, Jakob G. & Moller, Jesper & Aukema, Brian H. & Raffa, Kenneth F., 2008. "Spatial-Temporal Modeling of Forest Gaps Generated by Colonization From Below- and Above-Ground Bark Beetle Species," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 162-177, March.
    18. White, Joseph D. & Gutzwiller, Kevin J. & Barrow, Wylie C. & Randall, Lori Johnson & Swint, Pamela, 2008. "Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem," Ecological Modelling, Elsevier, vol. 214(2), pages 181-200.
    19. Ascough, J.C. & Maier, H.R. & Ravalico, J.K. & Strudley, M.W., 2008. "Future research challenges for incorporation of uncertainty in environmental and ecological decision-making," Ecological Modelling, Elsevier, vol. 219(3), pages 383-399.
    20. Edgar, Christopher B. & Burk, Thomas E., 2007. "Demonstration and verification of a model that generates defoliation patterns in forested landscapes," Ecological Modelling, Elsevier, vol. 205(3), pages 301-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keane, Robert E. & Cary, Geoffrey J. & Flannigan, Mike D. & Parsons, Russell A. & Davies, Ian D. & King, Karen J. & Li, Chao & Bradstock, Ross A. & Gill, Malcolm, 2013. "Exploring the role of fire, succession, climate, and weather on landscape dynamics using comparative modeling," Ecological Modelling, Elsevier, vol. 266(C), pages 172-186.
    2. Seidl, Rupert & Rammer, Werner & Scheller, Robert M. & Spies, Thomas A., 2012. "An individual-based process model to simulate landscape-scale forest ecosystem dynamics," Ecological Modelling, Elsevier, vol. 231(C), pages 87-100.
    3. Montagné-Huck, Claire & Brunette, Marielle, 2018. "Economic analysis of natural forest disturbances: A century of research," Journal of Forest Economics, Elsevier, vol. 32(C), pages 42-71.
    4. Rau, E-Ping & Fischer, Fabian & Joetzjer, Émilie & Maréchaux, Isabelle & Sun, I Fang & Chave, Jérôme, 2022. "Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics," Ecological Modelling, Elsevier, vol. 463(C).
    5. Ameztegui, Aitor & Coll, Lluís & Messier, Christian, 2015. "Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones," Ecological Modelling, Elsevier, vol. 313(C), pages 84-93.
    6. Lorrillière, Romain & Couvet, Denis & Robert, Alexandre, 2012. "The effects of direct and indirect constraints on biological communities," Ecological Modelling, Elsevier, vol. 224(1), pages 103-110.
    7. Gupta, Rajit & Sharma, Laxmi Kant, 2019. "The process-based forest growth model 3-PG for use in forest management: A review," Ecological Modelling, Elsevier, vol. 397(C), pages 55-73.
    8. Jafarov, Elchin E. & Loudermilk, Louise E. & Hiers, Kevin J. & Williams, Brett & Linn, Rodman & Jones, Chas & Hill, Samantha C. & Atchley, Adam L., 2021. "Linking habitat suitability with a longleaf pine-hardwood model: Building a species-predictive fire-land management framework," Ecological Modelling, Elsevier, vol. 440(C).
    9. Bastit, Félix & Brunette, Marielle & Montagné-Huck, Claire, 2023. "Pests, wind and fire: A multi-hazard risk review for natural disturbances in forests," Ecological Economics, Elsevier, vol. 205(C).
    10. Lagergren, Fredrik & Jönsson, Anna Maria & Blennow, Kristina & Smith, Benjamin, 2012. "Implementing storm damage in a dynamic vegetation model for regional applications in Sweden," Ecological Modelling, Elsevier, vol. 247(C), pages 71-82.
    11. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    12. Haga, Chihiro & Hotta, Wataru & Inoue, Takahiro & Matsui, Takanori & Aiba, Masahiro & Owari, Toshiaki & Suzuki, Satoshi N. & Shibata, Hideaki & Morimoto, Junko, 2022. "Modeling Tree Recovery in Wind-Disturbed Forests with Dense Understory Species under Climate Change," Ecological Modelling, Elsevier, vol. 472(C).
    13. Clasen, Christian & Heurich, Marco & Glaesener, Laurent & Kennel, Eckhard & Knoke, Thomas, 2015. "What factors affect the survival of tree saplings under browsing, and how can a loss of admixed tree species be forecast?," Ecological Modelling, Elsevier, vol. 305(C), pages 1-9.
    14. Irauschek, Florian & Barka, Ivan & Bugmann, Harald & Courbaud, Benoit & Elkin, Che & Hlásny, Tomáš & Klopcic, Matija & Mina, Marco & Rammer, Werner & Lexer, Manfred J, 2021. "Evaluating five forest models using multi-decadal inventory data from mountain forests," Ecological Modelling, Elsevier, vol. 445(C).
    15. Price, Jessica & Silbernagel, Janet & Miller, Nicholas & Swaty, Randy & White, Mark & Nixon, Kristina, 2012. "Eliciting expert knowledge to inform landscape modeling of conservation scenarios," Ecological Modelling, Elsevier, vol. 229(C), pages 76-87.
    16. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    17. Jönsson, Anna Maria & Lagergren, Fredrik, 2018. "Effects of climate and soil conditions on the productivity and defence capacity of Picea abies in Sweden—An ecosystem model assessment," Ecological Modelling, Elsevier, vol. 384(C), pages 154-167.
    18. Aggestam, Filip & Wolfslehner, Bernhard, 2018. "Deconstructing a complex future: Scenario development and implications for the forest-based sector," Forest Policy and Economics, Elsevier, vol. 94(C), pages 21-26.
    19. Keane, Robert E. & McKenzie, Donald & Falk, Donald A. & Smithwick, Erica A.H. & Miller, Carol & Kellogg, Lara-Karena B., 2015. "Representing climate, disturbance, and vegetation interactions in landscape models," Ecological Modelling, Elsevier, vol. 309, pages 33-47.
    20. Caicoya, Astor Toraño & Poschenrieder, Werner & Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Mönkkönen, Mikko & Uhl, Enno & Vergarechea, Marta & Pretzsch, Hans, 2023. "Sectoral policies as drivers of forest management and ecosystems services: A case study in Bavaria, Germany," Land Use Policy, Elsevier, vol. 130(C).
    21. Moïse Pierre Exélis & Rosli Ramli & Rabha W. Ibrahim & Azarae Hj Idris, 2022. "Foraging Behaviour and Population Dynamics of Asian Weaver Ants: Assessing Its Potential as Biological Control Agent of the Invasive Bagworms Metisa plana (Lepidoptera: Psychidae) in Oil Palm Plantati," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    22. Díaz-Yáñez, Olalla & Mola-Yudego, Blas & González-Olabarria, José Ramón, 2019. "Modelling damage occurrence by snow and wind in forest ecosystems," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.
    23. Blattert, Clemens & Eyvindson, Kyle & Hartikainen, Markus & Burgas, Daniel & Potterf, Maria & Lukkarinen, Jani & Snäll, Tord & Toraño-Caicoya, Astor & Mönkkönen, Mikko, 2022. "Sectoral policies cause incoherence in forest management and ecosystem service provisioning," Forest Policy and Economics, Elsevier, vol. 136(C).
    24. Peringer, Alexander & Buttler, Alexandre & Gillet, François & Pătru-Stupariu, Ileana & Schulze, Kiowa A. & Stupariu, Mihai-Sorin & Rosenthal, Gert, 2017. "Disturbance-grazer-vegetation interactions maintain habitat diversity in mountain pasture-woodlands," Ecological Modelling, Elsevier, vol. 359(C), pages 301-310.
    25. Shanin, Vladimir & Chumachenko, Sergey & Frolov, Pavel & Priputina, Irina & Tebenkova, Daria & Kolycheva, Anna, 2024. "Predicting the effect of climate change and management on net carbon sequestration in the forest ecosystems of the European part of Russia with the complex of models," Ecological Modelling, Elsevier, vol. 496(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miquelajauregui, Yosune & Cumming, Steven G. & Gauthier, Sylvie, 2019. "Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    2. Inglis, Nicole C. & Vukomanovic, Jelena, 2020. "Climate change disproportionately affects visual quality of cultural ecosystem services in a mountain region," Ecosystem Services, Elsevier, vol. 45(C).
    3. Metsaranta, J.M. & Kurz, W.A., 2012. "Inter-annual variability of ecosystem production in boreal jack pine forests (1975–2004) estimated from tree-ring data using CBM-CFS3," Ecological Modelling, Elsevier, vol. 224(1), pages 111-123.
    4. Portalier, S.M.J. & Candau, J.-N. & Lutscher, F., 2024. "Larval mortality from phenological mismatch can affect outbreak frequency and severity of a boreal forest defoliator," Ecological Modelling, Elsevier, vol. 493(C).
    5. Peringer, Alexander & Gillet, François & Rosenthal, Gert & Stoicescu, Ioana & Pătru-Stupariu, Ileana & Stupariu, Mihai-Sorin & Buttler, Alexandre, 2016. "Landscape-scale simulation experiments test Romanian and Swiss management guidelines for mountain pasture-woodland habitat diversity," Ecological Modelling, Elsevier, vol. 330(C), pages 41-49.
    6. Ager, Alan A. & Barros, Ana M.G. & Day, Michelle A. & Preisler, Haiganoush K. & Spies, Thomas A. & Bolte, John, 2018. "Analyzing fine-scale spatiotemporal drivers of wildfire in a forest landscape model," Ecological Modelling, Elsevier, vol. 384(C), pages 87-102.
    7. J. J. Warmink & M. Brugnach & J. Vinke-de Kruijf & R. M. J. Schielen & D. C. M. Augustijn, 2017. "Coping with Uncertainty in River Management: Challenges and Ways Forward," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4587-4600, November.
    8. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    9. Vanwindekens, Frédéric M. & Stilmant, Didier & Baret, Philippe V., 2013. "Development of a broadened cognitive mapping approach for analysing systems of practices in social–ecological systems," Ecological Modelling, Elsevier, vol. 250(C), pages 352-362.
    10. McLane, Adam J. & Semeniuk, Christina & McDermid, Gregory J. & Marceau, Danielle J., 2011. "The role of agent-based models in wildlife ecology and management," Ecological Modelling, Elsevier, vol. 222(8), pages 1544-1556.
    11. Honkaniemi, Juha & Ojansuu, Risto & Kasanen, Risto & Heliövaara, Kari, 2018. "Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT," Ecological Modelling, Elsevier, vol. 388(C), pages 45-60.
    12. Ima Ituen & Baoxin Hu, 2024. "Assessing the Impact of Land Conversion on Carbon Stocks and GHG Emissions," Land, MDPI, vol. 13(8), pages 1-31, August.
    13. Bona, Kelly A. & Webster, Kara L. & Thompson, Dan K. & Hararuk, Oleksandra & Zhang, Gary & Kurz, Werner A., 2024. "Using the Canadian Model for Peatlands (CaMP) to examine greenhouse gas emissions and carbon sink strength in Canada's boreal and temperate peatlands," Ecological Modelling, Elsevier, vol. 490(C).
    14. Jing Zhao & Hui Hu & Jinglei Wang, 2022. "Forest Carbon Reserve Calculation and Comprehensive Economic Value Evaluation: A Forest Management Model Based on Both Biomass Expansion Factor Method and Total Forest Value," IJERPH, MDPI, vol. 19(23), pages 1-15, November.
    15. Nils B. Weidmann & Michael D. Ward, 2010. "Predicting Conflict in Space and Time," Journal of Conflict Resolution, Peace Science Society (International), vol. 54(6), pages 883-901, December.
    16. Ogris, Nikica & Ferlan, Mitja & Hauptman, Tine & Pavlin, Roman & Kavčič, Andreja & Jurc, Maja & de Groot, Maarten, 2019. "RITY – A phenology model of Ips typographus as a tool for optimization of its monitoring," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    17. Hidayatno, Akhmad & Jafino, Bramka Arga & Setiawan, Andri D. & Purwanto, Widodo Wahyu, 2020. "When and why does transition fail? A model-based identification of adoption barriers and policy vulnerabilities for transition to natural gas vehicles," Energy Policy, Elsevier, vol. 138(C).
    18. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    19. Nguyen, Tuyen Van & Park, Young-Seuk & Jeoung, Chang-Sik & Choi, Won-Il & Kim, Yong-Kuk & Jung, Il-Hyo & Shigesada, Nanako & Kawasaki, Kohkichi & Takasu, Fugo & Chon, Tae-Soo, 2017. "Spatially explicit model applied to pine wilt disease dispersal based on host plant infestation," Ecological Modelling, Elsevier, vol. 353(C), pages 54-62.
    20. Meiyan Wang & Leilei Han & Yuting Ding, 2024. "Stability Analysis of a Delayed Paranthrene tabaniformis (Rott.) Control Model for Poplar Forests in China," Mathematics, MDPI, vol. 12(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:4:p:903-924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.