IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v6y2018i12p330-d190738.html
   My bibliography  Save this article

Fractional Modeling for Quantitative Inversion of Soil-Available Phosphorus Content

Author

Listed:
  • Chengbiao Fu

    (College of Information Engineering, Qujing Normal University, Qujing 655011, China)

  • Heigang Xiong

    (College of Applied Arts and Science, Beijing Union University, Beijing 100083, China)

  • Anhong Tian

    (College of Information Engineering, Qujing Normal University, Qujing 655011, China)

Abstract

The study of field spectra based on fractional-order differentials has rarely been reported, and traditional integer-order differentials only perform the derivative calculation for 1st-order or 2nd-order spectrum signals, ignoring the spectral transformation details between 0th-order to 1st-order and 1st-order to 2nd-order, resulting in the problem of low-prediction accuracy. In this paper, a spectral quantitative analysis model of soil-available phosphorus content based on a fractional-order differential is proposed. Firstly, a fractional-order differential was used to perform a derivative calculation of original spectral data from 0th-order to 2nd-order using 0.2-order intervals, to obtain 11 fractional-order spectrum data. Afterwards, seven bands with absolute correlation coefficient greater than 0.5 were selected as sensitive bands. Finally, a stepwise multiple linear regression algorithm was used to establish a spectral estimation model of soil-available phosphorus content under different orders, then the prediction effect of the model under different orders was compared and analyzed. Simulation results show that the best order for a soil-available phosphorus content regression model is a 0.6 fractional-order, the coefficient of determination ( R 2 ), root mean square error (RMSE), and ratio of performance to deviation (RPD) of the best model are 0.7888, 3.348878, and 2.001142, respectively. Since the RPD value is greater than 2, the optimal fractional model established in this study has good quantitative predictive ability for soil-available phosphorus content.

Suggested Citation

  • Chengbiao Fu & Heigang Xiong & Anhong Tian, 2018. "Fractional Modeling for Quantitative Inversion of Soil-Available Phosphorus Content," Mathematics, MDPI, vol. 6(12), pages 1-11, December.
  • Handle: RePEc:gam:jmathe:v:6:y:2018:i:12:p:330-:d:190738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/6/12/330/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/6/12/330/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zaw Latt & Hartmut Wittenberg, 2014. "Improving Flood Forecasting in a Developing Country: A Comparative Study of Stepwise Multiple Linear Regression and Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2109-2128, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Lin Qiu & Can-can Liu, 2017. "The Annual Maximum Flood Peak Discharge Forecasting Using Hermite Projection Pursuit Regression with SSO and LS Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 461-477, January.
    2. Hakan Tongal & Martijn J. Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
    3. Proloy Deb & Prankanu Debnath & Anjelo Francis Denis & Ong Tshering Lepcha, 2019. "Variability of soil physicochemical properties at different agroecological zones of Himalayan region: Sikkim, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2321-2339, October.
    4. Zhenfang He & Yaonan Zhang & Qingchun Guo & Xueru Zhao, 2014. "Comparative Study of Artificial Neural Networks and Wavelet Artificial Neural Networks for Groundwater Depth Data Forecasting with Various Curve Fractal Dimensions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5297-5317, December.
    5. Ruhhee Tabbussum & Abdul Qayoom Dar, 2021. "Modelling hybrid and backpropagation adaptive neuro-fuzzy inference systems for flood forecasting," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 519-566, August.
    6. Adnan Bashir & Muhammad Ahmed Shehzad & Ijaz Hussain & Muhammad Ishaq Asif Rehmani & Sajjad Haider Bhatti, 2019. "Reservoir Inflow Prediction by Ensembling Wavelet and Bootstrap Techniques to Multiple Linear Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5121-5136, December.
    7. Hakan Tongal & Martijn Booij, 2016. "A Comparison of Nonlinear Stochastic Self-Exciting Threshold Autoregressive and Chaotic k-Nearest Neighbour Models in Daily Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1515-1531, March.
    8. Marzieh Khajehali & Hamid R. Safavi & Mohammad Reza Nikoo & Mahmood Fooladi, 2024. "A fusion-based framework for daily flood forecasting in multiple-step-ahead and near-future under climate change scenarios: a case study of the Kan River, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8483-8504, July.
    9. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    10. Lan Yu & Soon Keat Tan & Lloyd H. C. Chua, 2017. "Online Ensemble Modeling for Real Time Water Level Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1105-1119, March.
    11. Nanda Khoirunisa & Cheng-Yu Ku & Chih-Yu Liu, 2021. "A GIS-Based Artificial Neural Network Model for Flood Susceptibility Assessment," IJERPH, MDPI, vol. 18(3), pages 1-20, January.
    12. Fang-Fang Li & Zhi-Yu Wang & Xiao Zhao & En Xie & Jun Qiu, 2019. "Decomposition-ANN Methods for Long-Term Discharge Prediction Based on Fisher’s Ordered Clustering with MESA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3095-3110, July.
    13. Zhangjun Liu & Shenglian Guo & Honggang Zhang & Dedi Liu & Guang Yang, 2016. "Comparative Study of Three Updating Procedures for Real-Time Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2111-2126, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:6:y:2018:i:12:p:330-:d:190738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.