IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4254-d361613.html
   My bibliography  Save this article

Dynamic Model of a Sustainable Water Resources Utilization System with Coupled Water Quality and Quantity in Tianjin City

Author

Listed:
  • Yutong Tian

    (Key Lab of Water and Sediment Science of the Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Chunhui Li

    (Key Lab of Water and Sediment Science of the Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Yujun Yi

    (Key Lab of Water and Sediment Science of the Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Xuan Wang

    (Key Lab of Water and Sediment Science of the Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Anping Shu

    (Key Lab of Water and Sediment Science of the Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China)

Abstract

With the development of industrial and agricultural production and the social economy, the demand for water resources has gradually increased. In this paper, based on the principles of system dynamics, a sustainable water resources utilization model with coupled water quality and quantity is established using STELLA software to assess the sustainable use of water resources. The model includes two modules: a water supply module and a water quality module. The water supply module includes four sub-systems: economy, population, water supply, and water demand. The water quality module consists of an environmental sub-system. The model is suitable for Tianjin, where water resources are scarce. Calibration is performed using data from 2013–2016, and verification is performed using data from 2017. The simulation results are good. In order to compare the sustainable use of water resources in different development scenarios in Tianjin for 2025, a sensitivity analysis is performed for each variable, and four decision variables are selected to establish four water resources use scenarios (Scenarios 1–4). The results show that, compared with scenario 1, water shortages in scenarios 2 and 3 are delayed. Scenario 4, with stable economic growth and environmental consideration, can effectively resolve the contradiction between water supply and demand in the future, and is more conducive to the improvement of water quality. Finally, based on the above research, measures to solve water resources problems are proposed, in order to provide a reference for the sustainable use of water resources and optimization of water resources allocation in Tianjin.

Suggested Citation

  • Yutong Tian & Chunhui Li & Yujun Yi & Xuan Wang & Anping Shu, 2020. "Dynamic Model of a Sustainable Water Resources Utilization System with Coupled Water Quality and Quantity in Tianjin City," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4254-:d:361613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Z. Xu & K. Takeuchi & H. Ishidaira & X. Zhang, 2002. "Sustainability Analysis for Yellow River Water Resources Using the System Dynamics Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(3), pages 239-261, June.
    2. Junfeng Yang & Kun Lei & Soonthiam Khu & Wei Meng, 2015. "Assessment of Water Resources Carrying Capacity for Sustainable Development Based on a System Dynamics Model: A Case Study of Tieling City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 885-899, February.
    3. Huanhuan Qin & Chunmiao Zheng & Xin He & Jens Christian Refsgaard, 2019. "Analysis of Water Management Scenarios Using Coupled Hydrological and System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4849-4863, November.
    4. Song, Malin & Cui, Xin & Wang, Shuhong, 2019. "Simulation of land green supply chain based on system dynamics and policy optimization," International Journal of Production Economics, Elsevier, vol. 217(C), pages 317-327.
    5. Takeda, Naoya & López-Galvis, Lorena & Pineda, Dario & Castilla, Armando & Takahashi, Taro & Fukuda, Shinji & Okada, Kensuke, 2019. "Evaluation of water dynamics of contour-levee irrigation system in sloped rice fields in Colombia," Agricultural Water Management, Elsevier, vol. 217(C), pages 107-118.
    6. Binglong Wang & Yanpeng Cai & Xin’An Yin & Qian Tan & Yan Hao, 2017. "An Integrated Approach of System Dynamics, Orthogonal Experimental Design and Inexact Optimization for Supporting Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1665-1694, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue Zhang & Lirong Xu & Chunhui Li, 2022. "Sustainability of Water Resources in Shandong Province Based on a System Dynamics Model of Water–Economy–Society for the Lower Yellow River," Sustainability, MDPI, vol. 14(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu Yuan & Jianzhong Zhou, 2017. "Self-Optimization System Dynamics Simulation of Real-Time Short Term Cascade Hydropower System Considering Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2127-2140, May.
    2. Zhiying Shao & Fengping Wu & Fang Li & Yue Zhao & Xia Xu, 2020. "System Dynamics Model for Evaluating Socio-Economic Impacts of Different Water Diversion Quantity from Transboundary River Basins—A Case Study of Xinjiang," IJERPH, MDPI, vol. 17(23), pages 1-24, December.
    3. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.
    4. Jesús Gastélum & Juan Valdés & Steven Stewart, 2010. "A System Dynamics Model to Evaluate Temporary Water Transfers in the Mexican Conchos Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1285-1311, May.
    5. Liang-Cheng Chang & Chih-Chao Ho & Ming-Sheng Yeh & Chao-Chung Yang, 2011. "An Integrating Approach for Conjunctive-Use Planning of Surface and Subsurface Water System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 59-78, January.
    6. Yue Ren & Xin Sun & Paul Wolfram & Shaoqiong Zhao & Xu Tang & Yifei Kang & Dongchang Zhao & Xinzhu Zheng, 2023. "Hidden delays of climate mitigation benefits in the race for electric vehicle deployment," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Jesús Gastélum & Juan Valdés & Steven Stewart, 2009. "A Decision Support System to Improve Water Resources Management in the Conchos Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1519-1548, June.
    8. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    9. Chao-Chung Yang & Liang-Cheng Chang & Chih-Chao Ho, 2008. "Application of System Dynamics with Impact Analysis to Solve the Problem of Water Shortages in Taiwan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(11), pages 1561-1577, November.
    10. Esther Barrios-Crespo & Saúl Torres-Ortega & Pedro Díaz-Simal, 2021. "Developing a Dynamic Model for Assessing Green Infrastructure Investments in Urban Areas," IJERPH, MDPI, vol. 18(20), pages 1-24, October.
    11. Wang Xiao-jun & Zhang Jian-yun & Wang Jian-hua & He Rui-min & Amgad ElMahdi & Liu Jin-hua & Wang Xin-gong & David King & Shamsuddin Shahid, 2014. "Climate change and water resources management in Tuwei river basin of Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 107-120, January.
    12. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    13. Qianjin Dong & Xu Zhang & Yalin Chen & Debin Fang, 2019. "Dynamic Management of a Water Resources-Socioeconomic-Environmental System Based on Feedbacks Using System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2093-2108, April.
    14. Benjamin L. Turner & Hector M. Menendez & Roger Gates & Luis O. Tedeschi & Alberto S. Atzori, 2016. "System Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of Some Past Cases and Forecasting Future Roles," Resources, MDPI, vol. 5(4), pages 1-24, November.
    15. Weijing Ma & Lihong Meng & Feili Wei & Christian Opp & Dewei Yang, 2020. "Sensitive Factors Identification and Scenario Simulation of Water Demand in the Arid Agricultural Area Based on the Socio-Economic-Environment Nexus," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    16. Zongzhi Wang & Ailing Ye & Kelin Liu & Liting Tan, 2021. "Optimal Model of Desalination Planning Under Uncertainties in a Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3277-3295, August.
    17. Fulei Shi & Haiqing Cao & Chuansheng Wang & Cuiyou Yao, 2020. "A System Dynamics Model for Ecological Environmental Management in Coal Mining Areas in China," IJERPH, MDPI, vol. 17(6), pages 1-17, March.
    18. Jin-peng Liu & Yu Tian & Hao Zheng & Tao Yi, 2019. "Research on Dynamic Evolution Simulation and Sustainability Evaluation Model of China’s Power Supply and Demand System," Energies, MDPI, vol. 12(10), pages 1-23, May.
    19. Kehao Sheng & Zhongkun Tang & Chao Sun & Shiyu Wang, 2022. "Comprehensive Evaluation Of Water Resources Carrying Capacity Of Yangtze River Economic Belt Based On Topsis-Aism Model," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 6(2), pages 57-64, May.
    20. Zhang, Weijie & Zhang, Ning & Yu, Yanni, 2019. "Carbon mitigation effects and potential cost savings from carbon emissions trading in China's regional industry," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4254-:d:361613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.