IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i12d10.1007_s11069-024-06657-3.html
   My bibliography  Save this article

A review of tunnel rockburst prediction methods based on static and dynamic indicators

Author

Listed:
  • Qinghe Zhang

    (Anhui University of Science and Technology
    Anhui University of Science and Technology)

  • Weiguo Li

    (Anhui University of Science and Technology)

  • Liang Yuan

    (Anhui University of Science and Technology)

  • Tianle Zheng

    (Anhui University of Science and Technology)

  • Zhiwei Liang

    (Anhui University of Science and Technology)

  • Xiaorui Wang

    (Anhui University of Science and Technology)

Abstract

Rockbursts frequently occur in tunneling projects and pose a serious threat to workers and the environment. Therefore, accurate prediction of rockbursts is of great practical significance. Currently, various rockburst prediction methods exist, with static and dynamic indicators playing a key role. This paper analyzes the importance of rockburst prediction methods based on Citespace software. The results indicate that microseismic monitoring, acoustic emission, and machine learning are the most important methods. The paper focuses on four common rockburst prediction methods: empirical methods, microseismic monitoring, acoustic emission, and machine learning, from the perspective of static and dynamic indicators. The performance and application of static and dynamic indicators in the four common prediction methods in recent years are summarized, the limitations of static and dynamic indicators at this stage are discussed, and possible future development directions are proposed. This paper provides the necessary perspective and tools for better understanding the advantages and disadvantages of static and dynamic indicators in the four rockburst prediction methods.

Suggested Citation

  • Qinghe Zhang & Weiguo Li & Liang Yuan & Tianle Zheng & Zhiwei Liang & Xiaorui Wang, 2024. "A review of tunnel rockburst prediction methods based on static and dynamic indicators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10465-10512, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06657-3
    DOI: 10.1007/s11069-024-06657-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06657-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06657-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zaobao Liu & Jianfu Shao & Weiya Xu & Yongdong Meng, 2013. "Prediction of rock burst classification using the technique of cloud models with attribution weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 549-568, September.
    2. Longjun Dong & Lingyun Zhang & Huini Liu & Kun Du & Xiling Liu, 2022. "Acoustic Emission b Value Characteristics of Granite under True Triaxial Stress," Mathematics, MDPI, vol. 10(3), pages 1-16, January.
    3. Chunlai Wang & Cong Cao & Yubo Liu & Changfeng Li & Guangyong Li & Hui Lu, 2021. "Experimental investigation on synergetic prediction of rockburst using the dominant-frequency entropy of acoustic emission," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3253-3270, September.
    4. Jiawei Tian & Dong Chen & Zhentang Liu & Weichen Sun, 2022. "Microseismic Dynamic Response and Multi-Source Warning during Rockburst Monitoring Based on Weight Decision Analysis," IJERPH, MDPI, vol. 19(23), pages 1-22, November.
    5. Mingwei Zhang & Shengdong Liu & Hideki Shimada, 2018. "Regional hazard prediction of rock bursts using microseismic energy attenuation tomography in deep mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1359-1378, September.
    6. Diyuan Li & Zida Liu & Danial Jahed Armaghani & Peng Xiao & Jian Zhou, 2022. "Novel Ensemble Tree Solution for Rockburst Prediction Using Deep Forest," Mathematics, MDPI, vol. 10(5), pages 1-23, March.
    7. Guangliang Feng & Guoqing Xia & Bingrui Chen & Yaxun Xiao & Ruichen Zhou, 2019. "A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    8. Yalei Yang & Lijie Du & Qingwei Li & Xiangbo Zhao & Weifeng Zhang & Zhiyong Liu, 2023. "Predicting the Accuracy and Applicability of Micro-Seismic Monitoring of Rock Burst in TBM Tunneling Using the Data from Two Case Studies in China," Sustainability, MDPI, vol. 15(5), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaofeng Wang & Xin Cai & Jian Zhou & Zhengyang Song & Xiaofeng Li, 2022. "Analytical, Numerical and Big-Data-Based Methods in Deep Rock Mechanics," Mathematics, MDPI, vol. 10(18), pages 1-5, September.
    2. Weizhang Liang & Asli Sari & Guoyan Zhao & Stephen D. McKinnon & Hao Wu, 2020. "Short-term rockburst risk prediction using ensemble learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1923-1946, November.
    3. Yakun Zhao & Jianhong Chen & Shan Yang & Zhe Liu, 2022. "Game Theory and an Improved Maximum Entropy-Attribute Measure Interval Model for Predicting Rockburst Intensity," Mathematics, MDPI, vol. 10(15), pages 1-22, July.
    4. Yumin Wang & Xian’e Zhang & Yifeng Wu, 2020. "Eutrophication Assessment Based on the Cloud Matter Element Model," IJERPH, MDPI, vol. 17(1), pages 1-19, January.
    5. Changgen Xia & Daolong Chen & Wei He & Huini Liu & Xiling Liu, 2022. "Research on Maximum Likelihood b Value and Confidence Limits Estimation in Doubly Truncated Apparent Frequency–Amplitude Distribution in Rock Acoustic Emission Tests," Mathematics, MDPI, vol. 10(14), pages 1-13, July.
    6. Yuantian Sun & Guichen Li & Sen Yang, 2021. "Rockburst Interpretation by a Data-Driven Approach: A Comparative Study," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    7. K. Cheng & Q. Fu & J. Meng & T. X. Li & W. Pei, 2018. "Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2767-2781, June.
    8. Daolong Chen & Changgen Xia & Huini Liu & Xiling Liu & Kun Du, 2022. "Research on b Value Estimation Based on Apparent Amplitude-Frequency Distribution in Rock Acoustic Emission Tests," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    9. Jiachuang Wang & Haoji Ma & Xianhang Yan, 2023. "Rockburst Intensity Classification Prediction Based on Multi-Model Ensemble Learning Algorithms," Mathematics, MDPI, vol. 11(4), pages 1-29, February.
    10. Ning Li & R. Jimenez, 2018. "A logistic regression classifier for long-term probabilistic prediction of rock burst hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 197-215, January.
    11. Jian Zhou & Xibing Li & Hani Mitri, 2015. "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 291-316, October.
    12. Guangliang Feng & Guoqing Xia & Bingrui Chen & Yaxun Xiao & Ruichen Zhou, 2019. "A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    13. Jianguo Zhang & Peitao Li & Xin Yin & Sheng Wang & Yuanguang Zhu, 2022. "Back Analysis of Surrounding Rock Parameters in Pingdingshan Mine Based on BP Neural Network Integrated Mind Evolutionary Algorithm," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
    14. Kun Cheng & Qiang Fu & Song Cui & Tian-xiao Li & Wei Pei & Dong Liu & Jun Meng, 2017. "Evaluation of the land carrying capacity of major grain-producing areas and the identification of risk factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 263-280, March.
    15. Farzin Golzar & David Nilsson & Viktoria Martin, 2020. "Forecasting Wastewater Temperature Based on Artificial Neural Network (ANN) Technique and Monte Carlo Sensitivity Analysis," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    16. Mohammadreza Khanmohammadi & Danial Jahed Armaghani & Mohanad Muayad Sabri Sabri, 2022. "Prediction and Optimization of Pile Bearing Capacity Considering Effects of Time," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
    17. Jianhong Chen & Yakun Zhao & Zhe Liu & Shan Yang & Zhiyong Zhou, 2023. "Prediction of Rockburst Propensity Based on Intuitionistic Fuzzy Set—Multisource Combined Weights—Improved Attribute Measurement Model," Mathematics, MDPI, vol. 11(16), pages 1-22, August.
    18. Lei Li & Yujiang Xie & Jingqiang Tan, 2020. "Application of Waveform Stacking Methods for Seismic Location at Multiple Scales," Energies, MDPI, vol. 13(18), pages 1-15, September.
    19. Xiqi Liu & Gang Wang & Leibo Song & Rong Hu & Xiaoming Ma & Xiaoping Ou & Shiji Zhong, 2023. "Study on the influence of fracture dip angle on mechanical and acoustic emission characteristics of deep granite," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 95-116, August.
    20. Keyou Shi & Yong Liu & Weizhang Liang, 2022. "An Extended ORESTE Approach for Evaluating Rockburst Risk under Uncertain Environments," Mathematics, MDPI, vol. 10(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06657-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.