IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i3p885-899.html
   My bibliography  Save this article

Assessment of Water Resources Carrying Capacity for Sustainable Development Based on a System Dynamics Model: A Case Study of Tieling City, China

Author

Listed:
  • Junfeng Yang
  • Kun Lei
  • Soonthiam Khu
  • Wei Meng

Abstract

Studies of water resources carrying capacity (WRCC) can provide helpful information about how the socio-economic system is both supported and restrained by the water resources system. As such, there is a need to develop better quantitative assessment methods to determine the potential maximum socio-economic growth within a catchment subjected to a given amount of water resource. An improved WRCC assessment method based on a system dynamics model (WRCC-SDM) is proposed in this paper. WRCC-SDM is built on synthesis simulations of coupling effects and feedback mechanisms within the society-economy-water compound system. The results can integrally represent system behaviors and states, and the evaluation of WRCC is achieved using this model. Moreover, an integrated indicator (Population-GDP-GDP per capita) is proposed to express the threshold value of WRCC. Based on the natural water resources supply capacity and associated socio-economic development potential, the concepts of critical WRCC and extreme WRCC are put forward. Critical WRCC represents the socio-economic scale that will cause total water demand to reach the maximum natural water resources supply capacity, while extreme WRCC reflects the socio-economic scale when the GDP growth rate constrained by limited water resources is zero. The methodology was applied to assess the water resources situation in Tieling City, China under different scenarios. The results indicate that: (1) Given the constraints represented by water resources, projected GDP growth tends to follow an S-curve growth pattern; and (2) Rapid population growth may lead to earlier and more severe water resources constraints. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Junfeng Yang & Kun Lei & Soonthiam Khu & Wei Meng, 2015. "Assessment of Water Resources Carrying Capacity for Sustainable Development Based on a System Dynamics Model: A Case Study of Tieling City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 885-899, February.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:3:p:885-899
    DOI: 10.1007/s11269-014-0849-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0849-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0849-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jesús Gastélum & Juan Valdés & Steven Stewart, 2009. "A Decision Support System to Improve Water Resources Management in the Conchos Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1519-1548, June.
    2. Wei, Shouke & Yang, Hong & Song, Jinxi & Abbaspour, Karim C. & Xu, Zongxue, 2012. "System dynamics simulation model for assessing socio-economic impacts of different levels of environmental flow allocation in the Weihe River Basin, China," European Journal of Operational Research, Elsevier, vol. 221(1), pages 248-262.
    3. Feng, Li-Hua & Zhang, Xing-Cai & Luo, Gao-Yuan, 2008. "Application of system dynamics in analyzing the carrying capacity of water resources in Yiwu City, China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 269-278.
    4. Li Gong & Chunling Jin, 2009. "Fuzzy Comprehensive Evaluation for Carrying Capacity of Regional Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2505-2513, September.
    5. Xiao-meng Song & Fan-zhe Kong & Che-sheng Zhan, 2011. "Assessment of Water Resources Carrying Capacity in Tianjin City of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 857-873, February.
    6. Ines Winz & Gary Brierley & Sam Trowsdale, 2009. "The Use of System Dynamics Simulation in Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1301-1323, May.
    7. Z. Xu & K. Takeuchi & H. Ishidaira & X. Zhang, 2002. "Sustainability Analysis for Yellow River Water Resources Using the System Dynamics Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 16(3), pages 239-261, June.
    8. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cong Liu & Wenlai Jiang & Yang Liu & Yunfei Liu, 2023. "Evaluation for Water and Land Resources System Efficiency and Influencing Factors in China: A Two-Stage Network DEA Model," Land, MDPI, vol. 12(2), pages 1-18, February.
    2. Yujie Wei & Ran Wang & Xin Zhuo & Haoying Feng, 2021. "Research on Comprehensive Evaluation and Coordinated Development of Water Resources Carrying Capacity in Qingjiang River Basin, China," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    3. K. Cheng & Q. Fu & J. Meng & T. X. Li & W. Pei, 2018. "Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2767-2781, June.
    4. An Huang & Li Tian & Qing Li & Yongfu Li & Jianghao Yu & Yuan Gao & Jing Xia, 2023. "Land-Use Planning Serves as a Critical Tool for Improving Resources and Environmental Carrying Capacity: A Review of Evaluation Methods and Application," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    5. Qianjin Dong & Xu Zhang & Yalin Chen & Debin Fang, 2019. "Dynamic Management of a Water Resources-Socioeconomic-Environmental System Based on Feedbacks Using System Dynamics," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2093-2108, April.
    6. Bao Wenchao & Chen Beier & Yan Minghui, 2024. "Analysis of Multi-Factor Dynamic Coupling and Government Intervention Level for Urbanization in China: Evidence from the Yangtze River Economic Belt," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 18(1), pages 1-18, January.
    7. Changchun Tan & Qinhong Peng & Tao Ding & Zhixiang Zhou, 2021. "Regional Assessment of Land and Water Carrying Capacity and Utilization Efficiency in China," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    8. Yutong Tian & Chunhui Li & Yujun Yi & Xuan Wang & Anping Shu, 2020. "Dynamic Model of a Sustainable Water Resources Utilization System with Coupled Water Quality and Quantity in Tianjin City," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    9. Juan Yin & Jin Guo, 2022. "Ecological Effect Assessment of Low-Carbon City Construction in China," IJERPH, MDPI, vol. 19(21), pages 1-19, November.
    10. Liu Yuan & Jianzhong Zhou, 2017. "Self-Optimization System Dynamics Simulation of Real-Time Short Term Cascade Hydropower System Considering Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(7), pages 2127-2140, May.
    11. Cundong Xu & Xiaomeng Hu & Zijin Liu & Xin Wang & Junjiao Tian & Zhihong Zhao, 2023. "Predicting the Evolution Trend of Water and Land Resource Carrying Capacity Based on CA–Markov Model in an Arid Region of Northwest China," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    12. Weijing Ma & Lihong Meng & Feili Wei & Christian Opp & Dewei Yang, 2020. "Sensitive Factors Identification and Scenario Simulation of Water Demand in the Arid Agricultural Area Based on the Socio-Economic-Environment Nexus," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    13. Kaiyuan Li & Xiaolong Jin & Danxun Ma & Penghui Jiang, 2019. "Evaluation of Resource and Environmental Carrying Capacity of China’s Rapid-Urbanization Areas—A Case Study of Xinbei District, Changzhou," Land, MDPI, vol. 8(4), pages 1-17, April.
    14. Esther Barrios-Crespo & Saúl Torres-Ortega & Pedro Díaz-Simal, 2021. "Developing a Dynamic Model for Assessing Green Infrastructure Investments in Urban Areas," IJERPH, MDPI, vol. 18(20), pages 1-24, October.
    15. Jin-peng Liu & Yu Tian & Hao Zheng & Tao Yi, 2019. "Research on Dynamic Evolution Simulation and Sustainability Evaluation Model of China’s Power Supply and Demand System," Energies, MDPI, vol. 12(10), pages 1-23, May.
    16. Kehao Sheng & Zhongkun Tang & Chao Sun & Shiyu Wang, 2022. "Comprehensive Evaluation Of Water Resources Carrying Capacity Of Yangtze River Economic Belt Based On Topsis-Aism Model," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 6(2), pages 57-64, May.
    17. Zhiying Shao & Fengping Wu & Fang Li & Yue Zhao & Xia Xu, 2020. "System Dynamics Model for Evaluating Socio-Economic Impacts of Different Water Diversion Quantity from Transboundary River Basins—A Case Study of Xinjiang," IJERPH, MDPI, vol. 17(23), pages 1-24, December.
    18. Hossein Karami & Romina Sayahnia & Hossein Mahmoudi & Hossein Azadi & Sadegh Salehi, 2023. "Spatial analysis of resources and environmental carrying capacity in Iran," Natural Resources Forum, Blackwell Publishing, vol. 47(1), pages 60-86, February.
    19. Mengjiao Wang & Xiaofang Xu & Liyuan Zheng & Xiaolu Xu & Yukuo Zhang, 2023. "Analysis of the Relationship between Economic Development and Water Resources–Ecological Management Capacity in China Based on Nighttime Lighting Data," IJERPH, MDPI, vol. 20(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiying Shao & Fengping Wu & Fang Li & Yue Zhao & Xia Xu, 2020. "System Dynamics Model for Evaluating Socio-Economic Impacts of Different Water Diversion Quantity from Transboundary River Basins—A Case Study of Xinjiang," IJERPH, MDPI, vol. 17(23), pages 1-24, December.
    2. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    3. Wang Xiao-jun & Zhang Jian-yun & Shahid Shamsuddin & He Rui-min & Xia Xing-hui & Mou Xin-li, 2015. "Potential impact of climate change on future water demand in Yulin city, Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(1), pages 1-19, January.
    4. Huanhuan Qin & Chunmiao Zheng & Xin He & Jens Christian Refsgaard, 2019. "Analysis of Water Management Scenarios Using Coupled Hydrological and System Dynamics Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4849-4863, November.
    5. Sajjad Ahmad & Dinesh Prashar, 2010. "Evaluating Municipal Water Conservation Policies Using a Dynamic Simulation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3371-3395, October.
    6. Zhihe Chen & Shuai Wei, 2014. "Application of System Dynamics to Water Security Research," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 287-300, January.
    7. Suélen Fernandes & Mariele Canal Bonfante & Carla Tognato Oliveira & Mauricio Uriona Maldonado & Lucila M. S. Campos, 2020. "Decentralized Water Supply Management Model: a Case Study of Public Policies for the Utilization of Rainwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2771-2785, July.
    8. Ali Mirchi & Kaveh Madani & David Watkins & Sajjad Ahmad, 2012. "Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2421-2442, July.
    9. Abduraupov, Rustam & Akhmadjanova, Gulmira & Ibragimov, Abdulla & Bala, B.K. & Sidique, Shaufique F. & Makhmudov, Miraziz & Angelina, Kim, 2022. "Modeling of water management for cotton production in Uzbekistan," Agricultural Water Management, Elsevier, vol. 265(C).
    10. Jesus R. Gastelum & Ganesh Krishnamurthy & Nemesciano Ochoa & Shane Sibbett & Margie Armstrong & Parag Kalaria, 2018. "The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2247-2260, May.
    11. Angela Dikou, 2024. "Competence in Unsustainability Resolution—A New Paradigm," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    12. Yansong Zhang & Yujie Wei & Yu Mao, 2023. "Sustainability Assessment of Regional Water Resources in China Based on DPSIR Model," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    13. Wang Xiao-jun & Zhang Jian-yun & Wang Jian-hua & He Rui-min & Amgad ElMahdi & Liu Jin-hua & Wang Xin-gong & David King & Shamsuddin Shahid, 2014. "Climate change and water resources management in Tuwei river basin of Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 107-120, January.
    14. Langarudi, Saeed P. & Maxwell, Connie M. & Bai, Yining & Hanson, Austin & Fernald, Alexander, 2019. "Does Socioeconomic Feedback Matter for Water Models?," Ecological Economics, Elsevier, vol. 159(C), pages 35-45.
    15. Benjamin L. Turner & Hector M. Menendez & Roger Gates & Luis O. Tedeschi & Alberto S. Atzori, 2016. "System Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of Some Past Cases and Forecasting Future Roles," Resources, MDPI, vol. 5(4), pages 1-24, November.
    16. Teresa Torregrosa & Martín Sevilla & Borja Montaño & Victoria López-Vico, 2010. "The Integrated Management of Water Resources in Marina Baja (Alicante, Spain). A Simultaneous Equation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3799-3815, November.
    17. Boxin Wang & Bin Wang & Xiaobing Zhao & Jiao Li & Dasheng Zhang, 2023. "Study and Evaluation of Dynamic Carrying Capacity of Groundwater Resources in Hebei Province from 2010 to 2017," Sustainability, MDPI, vol. 15(5), pages 1-15, March.
    18. Gohari, Alireza & Savari, Peyman & Eslamian, Saeid & Etemadi, Nematollah & Keilmann-Gondhalekar, Daphne, 2022. "Developing a system dynamic plus framework for water-land-society nexus modeling within urban socio-hydrologic systems," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    19. Jeong, Hanseok & Adamowski, Jan, 2016. "A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale," Agricultural Water Management, Elsevier, vol. 171(C), pages 89-107.
    20. Yujie Wei & Ran Wang & Xin Zhuo & Haoying Feng, 2021. "Research on Comprehensive Evaluation and Coordinated Development of Water Resources Carrying Capacity in Qingjiang River Basin, China," Sustainability, MDPI, vol. 13(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:3:p:885-899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.