IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v177y2016icp10-23.html
   My bibliography  Save this article

An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation

Author

Listed:
  • Li, Mo
  • Guo, Ping
  • Singh, Vijay P.
  • Yang, Gaiqiang

Abstract

Agricultural land and water resources are simultaneously declining due to population growth and economic expansion, which emphasizes the need for optimal allocation of these resources to balance socioeconomic development and water conservation. This study develops a framework for allocation of agricultural land-water resources and risk evaluation under uncertainty. The framework is capable of fully reflecting multiple uncertainties expressed as intervals and probability distributions, considering the connections of agricultural water and land resources. The developed framework will be helpful for managers in gaining insights into the tradeoffs between system benefits and constraint-violation risks, permitting an in-depth analysis of risks of agricultural irrigation water shortage under various violating probabilities. The framework is applied for optimization of agricultural water and land resources in the middle reaches of Heihe River basin. A series of water and land allocation results under different flow levels and violating probabilities were obtained and analyzed in detail through optimally allocating limited water and land resources to different irrigation areas and crops. Comparison with actual conditions shows that both the “net benefit per unit water” and “net benefit per unit land” increase which will demonstrate the feasibility and applicability of the developed framework. In addition, probability distributions of water allocation under various flow levels are generated to help decision makers learn detailed water distribution information and thus help make comprehensive irrigation schemes in the planning horizon under uncertainty. Results of evaluation of agricultural irrigation water shortage risks indicate that the water shortage risks in the middle reaches of Heihe River basin are in the category of acceptable risk level or brink risk level. The developed framework can be valuable for providing a reliable decision aid for optimal water and land resources allocation, and can ensure that the management policies and plans are made with reasonable consideration of both system benefits and risks.

Suggested Citation

  • Li, Mo & Guo, Ping & Singh, Vijay P. & Yang, Gaiqiang, 2016. "An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation," Agricultural Water Management, Elsevier, vol. 177(C), pages 10-23.
  • Handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:10-23
    DOI: 10.1016/j.agwat.2016.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377416302165
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2016.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maqsood, Imran & Huang, Guo H. & Scott Yeomans, Julian, 2005. "An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty," European Journal of Operational Research, Elsevier, vol. 167(1), pages 208-225, November.
    2. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    3. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.
    4. Dai, Z.Y. & Li, Y.P., 2013. "A multistage irrigation water allocation model for agricultural land-use planning under uncertainty," Agricultural Water Management, Elsevier, vol. 129(C), pages 69-79.
    5. Bao, Chao & Fang, Chuang-lin, 2007. "Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China," Ecological Economics, Elsevier, vol. 62(3-4), pages 508-517, May.
    6. Sethi, Laxmi Narayan & Panda, Sudhindra N. & Nayak, Manoj K., 2006. "Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India," Agricultural Water Management, Elsevier, vol. 83(3), pages 209-220, June.
    7. Wang, S. & Huang, G.H., 2014. "An integrated approach for water resources decision making under interactive and compound uncertainties," Omega, Elsevier, vol. 44(C), pages 32-40.
    8. Li, Y.P. & Liu, J. & Huang, G.H., 2014. "A hybrid fuzzy-stochastic programming method for water trading within an agricultural system," Agricultural Systems, Elsevier, vol. 123(C), pages 71-83.
    9. Ana Iglesias & Luis Garrote & Francisco Flores & Marta Moneo, 2007. "Challenges to Manage the Risk of Water Scarcity and Climate Change in the Mediterranean," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 775-788, May.
    10. Dattatray Regulwar & Jyotiba Gurav, 2011. "Irrigation Planning Under Uncertainty—A Multi Objective Fuzzy Linear Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1387-1416, March.
    11. Chuang-lin Fang & Chao Bao & Jin-chuan Huang, 2007. "Management Implications to Water Resources Constraint Force on Socio-economic System in Rapid Urbanization: A Case Study of the Hexi Corridor, NW China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1613-1633, September.
    12. P. Guo & G. Huang & L. He & H. Zhu, 2009. "Interval-parameter Two-stage Stochastic Semi-infinite Programming: Application to Water Resources Management under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 1001-1023, March.
    13. Wenquan Gu & Dongguo Shao & Yufang Jiang, 2012. "Risk Evaluation of Water Shortage in Source Area of Middle Route Project for South-to-North Water Transfer in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3479-3493, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Youzhi & Guo, Xinwei & Zhang, Fan & Yin, Huijuan & Guo, Ping & Zhang, Wenge & Li, Qiangkun, 2022. "The spatially-distributed ANN-optimization approach for water-agriculture-ecology nexus management under uncertainties and risks," Agricultural Water Management, Elsevier, vol. 271(C).
    2. Seyed Reza Es’haghi & Hamid Karimi & Amirreza Rezaei & Pouria Ataei, 2022. "Content Analysis of the Problems and Challenges of Agricultural Water Use: A Case Study of Lake Urmia Basin at Miandoab, Iran," SAGE Open, , vol. 12(2), pages 21582440221, April.
    3. K. Cheng & Q. Fu & J. Meng & T. X. Li & W. Pei, 2018. "Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2767-2781, June.
    4. Kanchan Joshi & Thiagu Ranganathan & Ram Ranjan, 2021. "Exploring Higher Order Risk Preferences of Farmers in a Water-Scarce Region: Evidence from a Field Experiment in West Bengal, India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(2), pages 317-344, June.
    5. Yue, Qiong & Zhang, Fan & Zhang, Chenglong & Zhu, Hua & Tang, Yikuan & Guo, Ping, 2020. "A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 230(C).
    6. Weiyao Tang & Zongmin Li & Yan Tu, 2018. "Sustainability Risk Evaluation for Large-Scale Hydropower Projects with Hybrid Uncertainty," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    7. Li, Jiang & Song, Jian & Li, Mo & Shang, Songhao & Mao, Xiaomin & Yang, Jian & Adeloye, Adebayo J., 2018. "Optimization of irrigation scheduling for spring wheat based on simulation-optimization model under uncertainty," Agricultural Water Management, Elsevier, vol. 208(C), pages 245-260.
    8. Chongfeng Ren & Jiantao Yang & Hongbo Zhang, 2019. "An inexact fractional programming model for irrigation water resources optimal allocation under multiple uncertainties," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-17, June.
    9. Liu, Qi & Niu, Jun & Wood, Jeffrey D. & Kang, Shaozhong, 2022. "Spatial optimization of cropping pattern in the upper-middle reaches of the Heihe River basin, Northwest China," Agricultural Water Management, Elsevier, vol. 264(C).
    10. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    11. Jianwei Wang & Tianling Qin & Xizhi Lv & Yongxin Ni & Qiufen Zhang & Li Ma, 2023. "Study of Optimal and Joint Allocations of Water and land Resources for Multiple Objectives," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1241-1256, February.
    12. Gong, Xinghui & Zhang, Hongbo & Ren, Chongfeng & Sun, Dongyong & Yang, Jiantao, 2020. "Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty," Agricultural Water Management, Elsevier, vol. 239(C).
    13. Wenjie Geng & Xiaohui Jiang & Yuxin Lei & Jinyan Zhang & Huan Zhao, 2021. "The Allocation of Water Resources in the Midstream of Heihe River for the “97 Water Diversion Scheme” and the “Three Red Lines”," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    14. Cervantes-Gaxiola, Maritza E. & Sosa-Niebla, Erik F. & Hernández-Calderón, Oscar M. & Ponce-Ortega, José M. & Ortiz-del-Castillo, Jesús R. & Rubio-Castro, Eusiel, 2020. "Optimal crop allocation including market trends and water availability," European Journal of Operational Research, Elsevier, vol. 285(2), pages 728-739.
    15. Ali Reza Nafarzadegan & Hassan Vagharfard & Mohammad Reza Nikoo & Ahmad Nohegar, 2018. "Socially-Optimal and Nash Pareto-Based Alternatives for Water Allocation under Uncertainty: an Approach and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2985-3000, July.
    16. Zhang, Yu & Ren, Chongfeng & Zhang, Hongbo & Xie, Zhishuai & Wang, Yashi, 2022. "Managing irrigation water resources with economic benefit and energy consumption: an interval linear multi-objective fractional optimization model under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 272(C).
    17. Chen, You-hua & Chen, Mei-xia & Mishra, Ashok K., 2020. "Subsidies under uncertainty: Modeling of input- and output-oriented policies," Economic Modelling, Elsevier, vol. 85(C), pages 39-56.
    18. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong, 2018. "An interval multi-objective programming model for irrigation water allocation under uncertainty," Agricultural Water Management, Elsevier, vol. 196(C), pages 24-36.
    19. Bingkui Qiu & Yan Tu & Guoliang Ou & Min Zhou & Yifan Zhu & Shuhan Liu & Haoyang Ma, 2023. "Optimal Modeling of Sustainable Land Use Planning under Uncertain at a Watershed Level: Interval Stochastic Fuzzy Linear Programming with Chance Constraints," Land, MDPI, vol. 12(5), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Mo & Guo, Ping & Singh, Vijay P., 2016. "An efficient irrigation water allocation model under uncertainty," Agricultural Systems, Elsevier, vol. 144(C), pages 46-57.
    2. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.
    3. J. Maestre-Valero & D. Martínez-Granados & V. Martínez-Alvarez & J. Calatrava, 2013. "Socio-Economic Impact of Evaporation Losses from Reservoirs Under Past, Current and Future Water Availability Scenarios in the Semi-Arid Segura Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1411-1426, March.
    4. S. Dutta & B.C. Sahoo & Rajashree Mishra & S. Acharya, 2016. "Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops Pattern and Water Balance in a Farm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4097-4123, September.
    5. Chen, Shu & Shao, Dongguo & Tan, Xuezhi & Gu, Wenquan & Lei, Caixiu, 2017. "An interval multistage classified model for regional inter- and intra-seasonal water management under uncertain and nonstationary condition," Agricultural Water Management, Elsevier, vol. 191(C), pages 98-112.
    6. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    7. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    8. Boyu Wang & Xiang Gao, 2021. "Temporal and spatial variations of water resources constraint intensity on urbanization in the Shiyang River Basin, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10038-10055, July.
    9. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    10. Mingguang Tu & Futao Wang & Yi Zhou & Shixin Wang, 2016. "Gridded Water Resource Distribution Simulation for China Based on Third-Order Basin Data from 2002," Sustainability, MDPI, vol. 8(12), pages 1-14, December.
    11. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    12. Zongzhi Wang & Ailing Ye & Kelin Liu & Liting Tan, 2021. "Optimal Model of Desalination Planning Under Uncertainties in a Water Supply System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3277-3295, August.
    13. Yunqiang Liu & Jiuping Xu & Huawei Luo, 2014. "An Integrated Approach to Modelling the Economy-Society-Ecology System in Urbanization Process," Sustainability, MDPI, vol. 6(4), pages 1-27, April.
    14. Hailiang Ma & Nan-Ting Chou & Lei Wang, 2016. "Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China," Sustainability, MDPI, vol. 8(11), pages 1-18, November.
    15. C. Li & L. Zhang, 2015. "An Inexact Two-Stage Allocation Model for Water Resources Management Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1823-1841, April.
    16. Chuyu Xia & Yan Li & Yanmei Ye & Zhou Shi, 2016. "An Integrated Approach to Explore the Relationship Among Economic, Construction Land Use, and Ecology Subsystems in Zhejiang Province, China," Sustainability, MDPI, vol. 8(5), pages 1-20, May.
    17. Guangdong Li & Chuanglin Fang, 2014. "Analyzing the multi-mechanism of regional inequality in China," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(1), pages 155-182, January.
    18. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    19. Chenglong Zhang & Qiong Yue & Ping Guo, 2019. "A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan," IJERPH, MDPI, vol. 16(11), pages 1-18, May.
    20. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:177:y:2016:i:c:p:10-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.