IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i14d10.1007_s11269-016-1470-z.html
   My bibliography  Save this article

An Integrated Approach for Targeting Critical Source Areas to Control Nonpoint Source Pollution in Watersheds

Author

Listed:
  • Subhasis Giri

    (University Heights)

  • Zeyuan Qiu

    (University Heights)

  • Tony Prato

    (University of Missouri-Columbia)

  • Biliang Luo

    (Huanan Agricultural University)

Abstract

This study presents an integrated approach for targeting critical source areas (CSAs) to control nonpoint source pollution in watersheds. CSAs are the intersections between hydrologically sensitive areas (HSAs) and high pollution producing areas of watersheds. HSAs are the areas with high hydrological sensitivity and potential for generating runoff. They were based on a soil topographic index in consistence of a saturation excess runoff process. High pollution producing areas are the areas that have a high potential for generating pollutants. Such areas were based on simulated pollution loads to streams by the Soil and Water Assessment Tool. The integrated approach is applied to the Neshanic River watershed, a suburban watershed with mixed land uses in New Jersey in the U.S. Results show that several land uses result in water pollution: agricultural land causes sediment, nitrogen and phosphorus pollution; wetlands cause sediment and phosphorus pollution; and urban lands cause nitrogen and phosphorus pollution. The primary CSAs are agricultural lands for all three pollutants, urban lands for nitrogen and phosphorus, and wetlands for sediment and phosphorus. Some pollution producing areas were not classified into CSAs because they are not located in HSAs and the pollutants generated in those areas are less likely to be transported by runoff into streams. The integrated approach identifies CSAs at a very fine scale, which is useful for targeting the implementation of best management practices for water quality improvement, and can be applied broadly in different watersheds to improve the economic efficiency of controlling nonpoint source pollution.

Suggested Citation

  • Subhasis Giri & Zeyuan Qiu & Tony Prato & Biliang Luo, 2016. "An Integrated Approach for Targeting Critical Source Areas to Control Nonpoint Source Pollution in Watersheds," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5087-5100, November.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1470-z
    DOI: 10.1007/s11269-016-1470-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1470-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1470-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    2. Liangang Chen & Xin Qian & Yong Shi, 2011. "Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3445-3463, October.
    3. Prakash Kaini & Kim Artita & John Nicklow, 2012. "Optimizing Structural Best Management Practices Using SWAT and Genetic Algorithm to Improve Water Quality Goals," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1827-1845, May.
    4. Ashish Pandey & V. Chowdary & B. Mal, 2007. "Identification of critical erosion prone areas in the small agricultural watershed using USLE, GIS and remote sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 729-746, April.
    5. Shen, Zhenyao & Hong, Qian & Chu, Zheng & Gong, Yongwei, 2011. "A framework for priority non-point source area identification and load estimation integrated with APPI and PLOAD model in Fujiang Watershed, China," Agricultural Water Management, Elsevier, vol. 98(6), pages 977-989, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olufemi Abimbola & Aaron Mittelstet & Tiffany Messer & Elaine Berry & Ann van Griensven, 2020. "Modeling and Prioritizing Interventions Using Pollution Hotspots for Reducing Nutrients, Atrazine and E. coli Concentrations in a Watershed," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    2. K. Cheng & Q. Fu & J. Meng & T. X. Li & W. Pei, 2018. "Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2767-2781, June.
    3. Xiaoyan Gong & Jianmin Bian & Yu Wang & Zhuo Jia & Hanli Wan, 2019. "Evaluating and Predicting the Effects of Land Use Changes on Water Quality Using SWAT and CA–Markov Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4923-4938, November.
    4. Willemen, Louise & Crossman, Neville D. & Newsom, Deanna & Hughell, David & Hunink, Johannes E. & Milder, Jeffrey C., 2019. "Aggregate effects on ecosystem services from certification of tea farming in the Upper Tana River basin, Kenya," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    5. Cors Van den Brink & Willem Jan Zaadnoordijk & Bert Groenhof & Rini Bulterman & Carolien Steinweg, 2017. "REFLECT, a Decision Support System for Harmonizing Spatial Developments with Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1271-1281, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Chowdary & D. Chakraborthy & A. Jeyaram & Y. Murthy & J. Sharma & V. Dadhwal, 2013. "Multi-Criteria Decision Making Approach for Watershed Prioritization Using Analytic Hierarchy Process Technique and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3555-3571, August.
    2. Dipesh Nepal & Prem B. Parajuli, 2022. "Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT," Agriculture, MDPI, vol. 12(4), pages 1-19, April.
    3. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    4. R. Jaiswal & T. Thomas & R. Galkate & N. Ghosh & S. Singh, 2014. "Watershed Prioritization Using Saaty’s AHP Based Decision Support for Soil Conservation Measures," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 475-494, January.
    5. Pradeep Mishra & Zhi-Qiang Deng, 2009. "Sediment TMDL Development for the Amite River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 839-852, March.
    6. Gowhar Meraj & Shakil Romshoo & A. Yousuf & Sadaff Altaf & Farrukh Altaf, 2015. "Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 153-175, May.
    7. Sanjeet Kumar & Ashok Mishra, 2015. "Critical Erosion Area Identification Based on Hydrological Response Unit Level for Effective Sedimentation Control in a River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1749-1765, April.
    8. Sanjeet Kumar & Ashok Mishra & Umesh Kumar Singh, 2023. "Assessment of Land Cover Changes and Climate Variability Effects on Catchment Hydrology Using a Physically Distributed Model," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    9. Mojtaba Moravej & Seyed-Mohammad Hosseini-Moghari, 2016. "Large Scale Reservoirs System Operation Optimization: the Interior Search Algorithm (ISA) Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3389-3407, August.
    10. Guoqiang Wang & Prasantha Hapuarachchi & Hiroshi Ishidaira & Anthony Kiem & Kuniyoshi Takeuchi, 2009. "Estimation of Soil Erosion and Sediment Yield During Individual Rainstorms at Catchment Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1447-1465, June.
    11. Demetris Zarris & Marianna Vlastara & Dionysia Panagoulia, 2011. "Sediment Delivery Assessment for a Transboundary Mediterranean Catchment: The Example of Nestos River Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3785-3803, November.
    12. Manoj Jain & Debjyoti Das, 2010. "Estimation of Sediment Yield and Areas of Soil Erosion and Deposition for Watershed Prioritization using GIS and Remote Sensing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2091-2112, August.
    13. Wen-Chieh Chou, 2010. "Modelling Watershed Scale Soil Loss Prediction and Sediment Yield Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 2075-2090, August.
    14. B. Sarma & A. Sarma & V. Singh, 2013. "Optimal Ecological Management Practices (EMPs) for Minimizing the Impact of Climate Change and Watershed Degradation Due to Urbanization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4069-4082, September.
    15. Shishant Gupta & Chandra Shekhar Prasad Ojha & Vijay P. Singh & Adebayo J. Adeloye & Sanjay K. Jain, 2023. "Pixel-Based Soil Loss Estimation and Prioritization of North-Western Himalayan Catchment Based on Revised Universal Soil Loss Equation (RUSLE)," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    16. Jiao Liu & Tie Liu & Anming Bao & Philippe Maeyer & Xianwei Feng & Scott N. Miller & Xi Chen, 2016. "Assessment of Different Modelling Studies on the Spatial Hydrological Processes in an Arid Alpine Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1757-1770, March.
    17. V. M. Jayasooriya & A. W. M. Ng & S. Muthukumaran & B. J. C. Perera, 2016. "Optimal Sizing of Green Infrastructure Treatment Trains for Stormwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5407-5420, November.
    18. Vesna Đukić & Zoran Radić, 2014. "GIS Based Estimation of Sediment Discharge and Areas of Soil Erosion and Deposition for the Torrential Lukovska River Catchment in Serbia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4567-4581, October.
    19. Gottshall, Bryan & Paudel, Krishna P., 2013. "Assessing the Efficiency of Alternative Best Management Practices to Reduce Nonpoint Source Pollution in the Broiler Production Region of Louisiana," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150463, Agricultural and Applied Economics Association.
    20. Jinfeng Yang & Xuelei Wang & Xinrong Li & Zhuang Tian & Guoyuan Zou & Lianfeng Du & Xuan Guo, 2023. "Potential Risk Identification of Agricultural Nonpoint Source Pollution: A Case Study of Yichang City, Hubei Province," Sustainability, MDPI, vol. 15(23), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:14:d:10.1007_s11269-016-1470-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.