IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i6d10.1007_s11269-017-1623-8.html
   My bibliography  Save this article

Optimum Abstraction of Groundwater for Sustaining Groundwater Level and Reducing Irrigation Cost

Author

Listed:
  • Golam Saleh Ahmed Salem

    (Tohoku University)

  • So Kazama

    (Tohoku University)

  • Daisuke Komori

    (Tohoku University)

  • Shamsuddin Shahid

    (Universiti Teknologi Malaysia)

  • Nepal C. Dey

    (Bangladesh Rural Advancement Committee)

Abstract

Adaptation to increasing irrigation cost due to declination of groundwater level is a major challenge in groundwater dependent irrigated region. The objective of this study is to estimate the optimum abstraction of groundwater for irrigation for sustainable management of groundwater resources in Northwest Bangladesh. A data-driven model using a support vector machine (SVM) has been developed to estimate the optimum abstraction of groundwater for irrigation and a multiple-linear regression (MLR)-based model has been developed to estimate the reduction of the irrigation cost due to the elevation of the groundwater level. The application of the SVM model revealed that the groundwater level in the area can be kept within the suction lift of a shallow tube-well by reducing pre-monsoon groundwater-dependent irrigated agriculture by 40%. Adaptive measures, such as reducing the overuse of water for irrigation and rescheduling harvesting, can keep the minimum level of groundwater within the reach of shallow tube-wells by reducing only 10% of groundwater-based irrigated agriculture. The elevation of the groundwater level through those adaptive measures can reduce the irrigation cost by 2.07 × 103 Bangladesh Taka (BDT) per hectare in Northwest Bangladesh, where the crop production cost is increasing due to the decline of the groundwater level. It is expected that the study would help in policy planning for the sustainable management of groundwater resources in the region.

Suggested Citation

  • Golam Saleh Ahmed Salem & So Kazama & Daisuke Komori & Shamsuddin Shahid & Nepal C. Dey, 2017. "Optimum Abstraction of Groundwater for Sustaining Groundwater Level and Reducing Irrigation Cost," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1947-1959, April.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1623-8
    DOI: 10.1007/s11269-017-1623-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1623-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1623-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ruimin & Zhang, Peipei & Wang, Xiujuan & Chen, Yaxin & Shen, Zhenyao, 2013. "Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed," Agricultural Water Management, Elsevier, vol. 117(C), pages 9-18.
    2. Mobin-ud Ahmad & Mac Kirby & Mohammad Islam & Md. Hossain & Md. Islam, 2014. "Groundwater Use for Irrigation and its Productivity: Status and Opportunities for Crop Intensification for Food Security in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1415-1429, March.
    3. Shamsuddin Shahid & Manzul Hazarika, 2010. "Groundwater Drought in the Northwestern Districts of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1989-2006, August.
    4. Luminda Gunawardhana & So Kazama & Saeki Kawagoe, 2011. "Impact of Urbanization and Climate Change on Aquifer Thermal Regimes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3247-3276, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    2. Sumaiya Jarin Ahammed & Eun-Sung Chung & Shamsuddin Shahid, 2018. "Parametric Assessment of Pre-Monsoon Agricultural Water Scarcity in Bangladesh," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    3. Mohammad Naser Sediqi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Rawshan Ali & Shadan Abubaker & Xiaojun Wang & Kamal Ahmed & Shamsuddin Shahid & Md. Asaduzzaman & Sayed Mir Agha Manawi, 2019. "Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    4. Sanaz Moghim, 2020. "Assessment of Water Storage Changes Using GRACE and GLDAS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 685-697, January.
    5. Saleem A. Salman & Shamsuddin Shahid & Haitham Abdulmohsin Afan & Mohammed Sanusi Shiru & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2020. "Changes in Climatic Water Availability and Crop Water Demand for Iraq Region," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    6. Mohammed Sanusi Shiru & Shamsuddin Shahid & Inhwan Park, 2021. "Projection of Water Availability and Sustainability in Nigeria Due to Climate Change," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    7. Jalilov, Shokhrukh-Mirzo & Rahman, Wakilur & Palash, Salauddin & Jahan, Hasneen & Mainuddin, Mohammed & Ward, Frank A., 2022. "Exploring strategies to control the cost of food security: Evidence from Bangladesh," Agricultural Systems, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirby, J.M. & Ahmad, M.D. & Mainuddin, M. & Palash, W. & Quadir, M.E. & Shah-Newaz, S.M. & Hossain, M.M., 2015. "The impact of irrigation development on regional groundwater resources in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 264-276.
    2. J. M. Kirby & M. Mainuddin & F. Mpelasoka & M. D. Ahmad & W. Palash & M.E. Quadir & S. M. Shah-Newaz & M. M. Hossain, 2016. "The impact of climate change on regional water balances in Bangladesh," Climatic Change, Springer, vol. 135(3), pages 481-491, April.
    3. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    5. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    6. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Yingzhuang Guo & Xiaoyan Wang & Lili Zhou & Charles Melching & Zeqi Li, 2020. "Identification of Critical Source Areas of Nitrogen Load in the Miyun Reservoir Watershed under Different Hydrological Conditions," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    8. Awada, Hassan & Di Prima, Simone & Sirca, Costantino & Giadrossich, Filippo & Marras, Serena & Spano, Donatella & Pirastru, Mario, 2022. "A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 260(C).
    9. Acharjee, Tapos Kumar & Halsema, Gerardo van & Ludwig, Fulco & Hellegers, Petra, 2017. "Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh," Agricultural Water Management, Elsevier, vol. 180(PA), pages 148-159.
    10. Wei Yan & Xuejun Duan & Jiayu Kang & Zhiyuan Ma, 2023. "Assessing the Impact of Rural Multifunctionality on Non-Point Source Pollution: A Case Study of Typical Hilly Watershed, China," Land, MDPI, vol. 12(10), pages 1-17, October.
    11. Ricci, Giovanni Francesco & D’Ambrosio, Ersilia & De Girolamo, Anna Maria & Gentile, Francesco, 2022. "Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin," Agricultural Water Management, Elsevier, vol. 259(C).
    12. Traverso, Silvio, 2016. "How to escape from a poverty trap: The case of Bangladesh," World Development Perspectives, Elsevier, vol. 4(C), pages 48-59.
    13. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Mahboob, M. Golam, 2023. "Simulation of water productivity of wheat in northwestern Bangladesh using multi-satellite data," Agricultural Water Management, Elsevier, vol. 281(C).
    14. Liu, Yansui & Zou, Lilin & Wang, Yongsheng, 2020. "Spatial-temporal characteristics and influencing factors of agricultural eco-efficiency in China in recent 40 years," Land Use Policy, Elsevier, vol. 97(C).
    15. Sucharita Pradhan & Anirban Dhar & Kamlesh Narayan Tiwari, 2022. "On Quantification of Groundwater Dynamics Under Long-term Land Use Land Cover Transition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4039-4055, September.
    16. Najeebullah Khan & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim & Rawshan Ali, 2019. "Influence of Surface Water Bodies on the Land Surface Temperature of Bangladesh," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    17. Caleb Christian Amos & Amir Ahmed & Ataur Rahman, 2020. "Sustainability in Water Provision in Rural Communities: the Feasibility of a Village Scale Rainwater Harvesting Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4633-4647, December.
    18. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    19. Sucharita Pradhan & Anirban Dhar & Kamlesh Narayan Tiwari & Satiprasad Sahoo, 2023. "Spatiotemporal analysis of land use land cover and future simulation for agricultural sustainability in a sub-tropical region of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7873-7902, August.
    20. Xiaoyan Gong & Jianmin Bian & Yu Wang & Zhuo Jia & Hanli Wan, 2019. "Evaluating and Predicting the Effects of Land Use Changes on Water Quality Using SWAT and CA–Markov Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4923-4938, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1623-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.