IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i11d10.1007_s11269-022-03234-w.html
   My bibliography  Save this article

On Quantification of Groundwater Dynamics Under Long-term Land Use Land Cover Transition

Author

Listed:
  • Sucharita Pradhan

    (Indian Institute of Technology Kharagpur)

  • Anirban Dhar

    (Indian Institute of Technology Kharagpur)

  • Kamlesh Narayan Tiwari

    (Indian Institute of Technology Kharagpur)

Abstract

The groundwater consumption for agriculture has increased since the green revolution, and its depletion severely threatens food security, especially in major rice-growing areas of Southeast Asia. This research investigated the spatiotemporal distribution of land use land cover (LULC) from 2000 to 2018 in a rice-dominated canal command area. The study compared the classification performance of two machine learning algorithms, i.e., Support Vector Machines (SVM) and Random Forest (RF). The time-varying response of LULC transition on groundwater dynamics was investigated using a 3-D numerical groundwater flow model (MODFLOW-NWT). The MODFLOW-NWT model was calibrated and validated with the observed hydraulic heads. The results indicated that RF outperformed SVM in overall classification during the testing period. The LULC of the command area revealed a seven-fold increase in built-up area from 19.12 km2 in 2000 to 133.72 km2 in 2018. Further, the Boro rice cultivated area has increased from 39.2% to 56.4% of the command area during the study period. The results of transient state calibration (R2 = 0.987, NSE = 0.987) and validation (R2 = 0.978, NSE = 0.974) of MODFLOW-NWT indicated satisfactory match between simulated hydraulic heads and observed hydraulic heads. The area under the hydraulic head of -32 m to -5 m was consistently increasing, which requires contemplation on the future sustainability of groundwater. The methodology and results of this study can be used for LULC classification in a heterogeneous landscape and accurate groundwater flow simulation in data inadequacy scenarios in major rice-growing areas of Southeast Asia.

Suggested Citation

  • Sucharita Pradhan & Anirban Dhar & Kamlesh Narayan Tiwari, 2022. "On Quantification of Groundwater Dynamics Under Long-term Land Use Land Cover Transition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4039-4055, September.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03234-w
    DOI: 10.1007/s11269-022-03234-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03234-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03234-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    2. Shamsuddin Shahid & Manzul Hazarika, 2010. "Groundwater Drought in the Northwestern Districts of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1989-2006, August.
    3. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    4. Padam Jee Omar & Shishir Gaur & S. B. Dwivedi & P. K. S. Dikshit, 2020. "A Modular Three-Dimensional Scenario-Based Numerical Modelling of Groundwater Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1913-1932, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mojid, Mohammad A. & Mainuddin, Mohammed & Murad, Khandakar Faisal Ibn & Kirby, John Mac, 2021. "Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – Evidence from Bangladesh," Agricultural Water Management, Elsevier, vol. 251(C).
    2. Sucharita Pradhan & Anirban Dhar & Kamlesh Narayan Tiwari & Satiprasad Sahoo, 2023. "Spatiotemporal analysis of land use land cover and future simulation for agricultural sustainability in a sub-tropical region of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7873-7902, August.
    3. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    4. Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
    5. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    6. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Yuan-Chien Lin & En-Dian Kuo & Wan-Ju Chi, 2021. "Analysis of Meteorological Drought Resilience and Risk Assessment of Groundwater Using Signal Analysis Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 179-197, January.
    8. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2022. "Changing occurrence of crop water surplus or deficit and the impact of irrigation: An analysis highlighting consequences for rice production in Bangladesh," Agricultural Water Management, Elsevier, vol. 269(C).
    9. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
    10. Mahdi Soleimani Motlagh & Hoda Ghasemieh & Ali Talebi & Khodayar Abdollahi, 2017. "Identification and Analysis of Drought Propagation of Groundwater During Past and Future Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 109-125, January.
    11. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    12. Tapos Kumar Acharjee & Petra Hellegers & Fulco Ludwig & Gerardo Halsema & Md. Abdul Mojid & Catharien Terwisscha Scheltinga, 2020. "Prioritization of adaptation measures for improved agricultural water management in Northwest Bangladesh," Climatic Change, Springer, vol. 163(1), pages 431-450, November.
    13. Acharjee, Tapos Kumar & Halsema, Gerardo van & Ludwig, Fulco & Hellegers, Petra, 2017. "Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh," Agricultural Water Management, Elsevier, vol. 180(PA), pages 148-159.
    14. Kayhomayoon, Zahra & Jamnani, Mostafa Rahimi & Rashidi, Sajjad & Ghordoyee Milan, Sami & Arya Azar, Naser & Berndtsson, Ronny, 2023. "Soft computing assessment of current and future groundwater resources under CMIP6 scenarios in northwestern Iran," Agricultural Water Management, Elsevier, vol. 285(C).
    15. Jaenam Lee, 2022. "Evaluation of Automatic Irrigation System for Rice Cultivation and Sustainable Agriculture Water Management," Sustainability, MDPI, vol. 14(17), pages 1-12, September.
    16. Haj-Amor, Zied & Kumar Acharjee, Tapos & Dhaouadi, Latifa & Bouri, Salem, 2020. "Impacts of climate change on irrigation water requirement of date palms under future salinity trend in coastal aquifer of Tunisian oasis," Agricultural Water Management, Elsevier, vol. 228(C).
    17. Carcedo, Ana J.P. & Bastos, Leonardo M. & Yadav, Sudhir & Mondal, Manoranjan K. & Jagadish, S.V. Krishna & Kamal, Farhana A. & Sutradhar, Asish & Prasad, P.V. Vara & Ciampitti, Ignacio, 2022. "Assessing impact of salinity and climate scenarios on dry season field crops in the coastal region of Bangladesh," Agricultural Systems, Elsevier, vol. 200(C).
    18. Salam, Md. Abdus & Rahman, Sanzidur & Anik, Asif Reza & Sharna, Shaima Chowdhury, 2023. "Exploring competitiveness of surface water versus ground water irrigation and their impacts on rice productivity and efficiency: An empirical analysis from Bangladesh," Agricultural Water Management, Elsevier, vol. 283(C).
    19. Sumaiya Jarin Ahammed & Rajab Homsi & Najeebullah Khan & Shamsuddin Shahid & Mohammed Sanusi Shiru & Morteza Mohsenipour & Kamal Ahmed & Nadeem Nawaz & Nor Eliza Alias & Ali Yuzir, 2020. "Assessment of changing pattern of crop water stress in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4619-4637, June.
    20. Dimitrios Myronidis & Dimitrios Stathis & Konstantinos Ioannou & Dimitrios Fotakis, 2012. "An Integration of Statistics Temporal Methods to Track the Effect of Drought in a Shallow Mediterranean Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4587-4605, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:11:d:10.1007_s11269-022-03234-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.