IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3437-d349263.html
   My bibliography  Save this article

Changes in Climatic Water Availability and Crop Water Demand for Iraq Region

Author

Listed:
  • Saleem A. Salman

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
    College of Engineering, Civil Engineering Department, University of Al-Qadisiyah, Al Diwaniyah, Iraq)

  • Shamsuddin Shahid

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia)

  • Haitham Abdulmohsin Afan

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

  • Mohammed Sanusi Shiru

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
    Department of Environmental Sciences, Faculty of Science, Federal University Dutse, Dutse P.M.B 7156, Nigeria
    Department of Civil Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

  • Nadhir Al-Ansari

    (Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Lulea, Sweden)

  • Zaher Mundher Yaseen

    (Sustainable Developments in Civil Engineering Research Group, Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam)

Abstract

Decreases in climatic water availability (CWA) and increases in crop water demand (CWD) in the background of climate change are a major concern in arid regions because of less water availability and higher irrigation requirements for crop production. Assessment of the spatiotemporal changes in CWA and CWD is important for the adaptation of irrigated agriculture to climate change for such regions. The recent changes in CWA and CWD during growing seasons of major crops have been assessed for Iraq where rapid changes in climate have been noticed in recent decades. Gridded precipitation of the global precipitation climatology center (GPCC) and gridded temperature of the climate research unit (CRU) having a spatial resolution of 0.5°, were used for the estimation of CWA and CWD using simple water balance equations. The Mann–Kendall (MK) test and one of its modified versions which can consider long-term persistence in time series, were used to estimate trends in CWA for the period 1961–2013. In addition, the changes in CWD between early (1961–1990) and late (1984–2013) periods were evaluated using the Wilcoxon rank test. The results revealed a deficit in water in all the seasons in most of the country while a surplus in the northern highlands in all the seasons except summer was observed. A significant reduction in the annual amount of CWA at a rate of −1 to −13 mm/year was observed at 0.5 level of significance in most of Iraq except in the north. Decreasing trends in CWA in spring (−0.4 to −1.8 mm/year), summer (−5.0 to −11 mm/year) and autumn (0.3 to −0.6 mm/year), and almost no change in winter was observed. The CWA during the growing season of summer crop (millet and sorghum) was found to decrease significantly in most of Iraq except in the north. The comparison of CWD revealed an increase in agricultural water needs in the late period (1984–2013) compared to the early period (1961–1990) by 1.0–8.0, 1.0–14, 15–30, 14–27 and 0.0–10 mm for wheat, barley, millet, sorghum and potato, respectively. The highest increase in CWD was found in April, October, June, June and April for wheat, barley, millet, sorghum and potato, respectively.

Suggested Citation

  • Saleem A. Salman & Shamsuddin Shahid & Haitham Abdulmohsin Afan & Mohammed Sanusi Shiru & Nadhir Al-Ansari & Zaher Mundher Yaseen, 2020. "Changes in Climatic Water Availability and Crop Water Demand for Iraq Region," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3437-:d:349263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brouziyne, Youssef & Abouabdillah, Aziz & Hirich, Abdelaziz & Bouabid, Rachid & Zaaboul, Rashyd & Benaabidate, Lahcen, 2018. "Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios," Agricultural Systems, Elsevier, vol. 162(C), pages 154-163.
    2. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    3. Rezaei Zaman, Mostafa & Morid, Saeed & Delavar, Majid, 2016. "Evaluating climate adaptation strategies on agricultural production in the Siminehrud catchment and inflow into Lake Urmia, Iran using SWAT within an OECD framework," Agricultural Systems, Elsevier, vol. 147(C), pages 98-110.
    4. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    5. Khamis Naba Sayl & Nur Shazwani Muhammad & Zaher Mundher Yaseen & Ahmed El-shafie, 2016. "Estimation the Physical Variables of Rainwater Harvesting System Using Integrated GIS-Based Remote Sensing Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3299-3313, July.
    6. Sheng Yue & ChunYuan Wang, 2004. "The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 201-218, June.
    7. Xiao-jun Wang & Jian-yun Zhang & Mahtab Ali & Shamsuddin Shahid & Rui-min He & Xing-hui Xia & Zhuo Jiang, 2016. "Impact of climate change on regional irrigation water demand in Baojixia irrigation district of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(2), pages 233-247, February.
    8. Golam Saleh Ahmed Salem & So Kazama & Daisuke Komori & Shamsuddin Shahid & Nepal C. Dey, 2017. "Optimum Abstraction of Groundwater for Sustaining Groundwater Level and Reducing Irrigation Cost," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1947-1959, April.
    9. Sahar Hadi Pour & Ahmad Khairi Abd Wahab & Shamsuddin Shahid & Xiaojun Wang, 2019. "Spatial Pattern of the Unidirectional Trends in Thermal Bioclimatic Indicators in Iran," Sustainability, MDPI, vol. 11(8), pages 1-24, April.
    10. De Silva, C.S. & Weatherhead, E.K. & Knox, J.W. & Rodriguez-Diaz, J.A., 2007. "Predicting the impacts of climate change--A case study of paddy irrigation water requirements in Sri Lanka," Agricultural Water Management, Elsevier, vol. 93(1-2), pages 19-29, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelaziz M. Okasha & Nehad Deraz & Adel H. Elmetwalli & Salah Elsayed & Mayadah W. Falah & Aitazaz Ahsan Farooque & Zaher Mundher Yaseen, 2022. "Effects of Irrigation Method and Water Flow Rate on Irrigation Performance, Soil Salinity, Yield, and Water Productivity of Cauliflower," Agriculture, MDPI, vol. 12(8), pages 1-18, August.
    2. Dang, Chiheng & Zhang, Hongbo & Yao, Congcong & Mu, Dengrui & Lyu, Fengguang & Zhang, Yu & Zhang, Shuqi, 2024. "IWRAM: A hybrid model for irrigation water demand forecasting to quantify the impacts of climate change," Agricultural Water Management, Elsevier, vol. 291(C).
    3. Mohammed Sanusi Shiru & Shamsuddin Shahid & Inhwan Park, 2021. "Projection of Water Availability and Sustainability in Nigeria Due to Climate Change," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    4. Mohd Sayeed Ul Hasan & Mufti Mohammad Saif & Nehal Ahmad & Abhishek Kumar Rai & Mohammad Amir Khan & Ali Aldrees & Wahaj Ahmad Khan & Mustafa K. A. Mohammed & Zaher Mundher Yaseen, 2023. "Spatiotemporal Analysis of Future Trends in Terrestrial Water Storage Anomalies at Different Climatic Zones of India Using GRACE/GRACE-FO," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    5. Bassim Mohammed Hashim & Ali Al Maliki & Maitham A. Sultan & Shamsuddin Shahid & Zaher Mundher Yaseen, 2022. "Effect of land use land cover changes on land surface temperature during 1984–2020: a case study of Baghdad city using landsat image," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1223-1246, June.
    6. Fouad H. Saeed & Mahmoud S. Al-Khafaji & Furat A. Mahmood Al-Faraj, 2021. "Sensitivity of Irrigation Water Requirement to Climate Change in Arid and Semi-Arid Regions towards Sustainable Management of Water Resources," Sustainability, MDPI, vol. 13(24), pages 1-21, December.
    7. Mohammed Magdy Hamed & Mohamed Salem Nashwan & Mohammed Sanusi Shiru & Shamsuddin Shahid, 2022. "Comparison between CMIP5 and CMIP6 Models over MENA Region Using Historical Simulations and Future Projections," Sustainability, MDPI, vol. 14(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Naser Sediqi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Rawshan Ali & Shadan Abubaker & Xiaojun Wang & Kamal Ahmed & Shamsuddin Shahid & Md. Asaduzzaman & Sayed Mir Agha Manawi, 2019. "Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    2. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    3. Mohd Khairul Idlan Muhammad & Mohamed Salem Nashwan & Shamsuddin Shahid & Tarmizi bin Ismail & Young Hoon Song & Eun-Sung Chung, 2019. "Evaluation of Empirical Reference Evapotranspiration Models Using Compromise Programming: A Case Study of Peninsular Malaysia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    4. Mohammed Sanusi Shiru & Shamsuddin Shahid & Inhwan Park, 2021. "Projection of Water Availability and Sustainability in Nigeria Due to Climate Change," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    5. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Tamiru Lemi & Fekadu Hailu, 2019. "Effects of Climate Change Variability on Agricultural Productivity," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 17(1), pages 14-20, February.
    7. Mansoor Ahmed & Ghulam Hussain Dars & Suhail Ahmed & Nir Y. Krakauer, 2023. "Analyzing drought trends over Sindh Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 643-661, October.
    8. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    9. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    10. Phogat, V. & Cox, J.W. & Šimůnek, J., 2018. "Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia," Agricultural Water Management, Elsevier, vol. 201(C), pages 107-117.
    11. Rahmani, Javad & Danesh-Yazdi, Mohammad, 2022. "Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin," Agricultural Water Management, Elsevier, vol. 270(C).
    12. Robyn Horan & Pawan S. Wable & Veena Srinivasan & Helen E. Baron & Virginie J. D. Keller & Kaushal K. Garg & Nathan Rickards & Mike Simpson & Helen A. Houghton-Carr & H. Gwyn Rees, 2021. "Modelling Small-Scale Storage Interventions in Semi-Arid India at the Basin Scale," Sustainability, MDPI, vol. 13(11), pages 1-28, May.
    13. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    14. Nnodu Ifeanyi Daniel & Magaji Joshua Ibrahim, 2024. "Spatiotemporal Variations of Rainfall Over Nigeria from 1971 to 2020," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(7), pages 1374-1390, July.
    15. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    16. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    17. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    18. Hüseyin Yavuz & Saffet Erdoğan, 2012. "Spatial Analysis of Monthly and Annual Precipitation Trends in Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 609-621, February.
    19. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    20. Chen, Zi-yue & Huang, Zhen-hai & Nie, Pu-yan, 2018. "Industrial characteristics and consumption efficiency from a nexus perspective – Based on Anhui’s Empirical Statistics," Energy Policy, Elsevier, vol. 115(C), pages 281-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3437-:d:349263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.