IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v34y2020i15d10.1007_s11269-020-02679-1.html
   My bibliography  Save this article

Sustainability in Water Provision in Rural Communities: the Feasibility of a Village Scale Rainwater Harvesting Scheme

Author

Listed:
  • Caleb Christian Amos

    (Western Sydney University
    Daffodil International University (DIU)
    EnviroWater Sydney Pty Ltd
    CSIRO Land and Water)

  • Amir Ahmed

    (Daffodil International University (DIU)
    Daffodil International University (DIU) Permanent Campus)

  • Ataur Rahman

    (Western Sydney University
    Daffodil International University (DIU)
    EnviroWater Sydney Pty Ltd)

Abstract

Groundwater resources are often the main source of drinking water for remote communities, but they are increasingly found to be unsuitable, and a source of ill health in many parts of the world. High annual rainfall in monsoonal regions makes rainwater harvesting an attractive alternative, but lack of infrastructure for capturing and storing sufficient quantities is often restrictive. This study focuses on the coastal region of Bangladesh where groundwater supplying tubewells are progressively found to contain arsenic and high salinity, and where cyclones are a common cause of damage to infrastructure. The aim of this study is to evaluate the potential of a village scale rainwater harvesting scheme as a solution to water security concerns. Analysis of various size rainwater storage systems (RSS) is conducted using daily rainfall data from Khulna Station in Bangladesh. It was found that a village scale RSS with 3 m deep and 100 m by 100 m surface area could supply 100 L/p/d for 85% of the year. The reliability could feasibly be increased to 100% with seasonal water restrictions. The village scale RSS is compared with an individual household level RSS. Advantages of the village scale RSS include the opportunity for improved management and water quality monitoring, and the potential for public-private partnerships. The proposed methodology can be adapted to other monsoonal delta regions to enhance water supply.

Suggested Citation

  • Caleb Christian Amos & Amir Ahmed & Ataur Rahman, 2020. "Sustainability in Water Provision in Rural Communities: the Feasibility of a Village Scale Rainwater Harvesting Scheme," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4633-4647, December.
  • Handle: RePEc:spr:waterr:v:34:y:2020:i:15:d:10.1007_s11269-020-02679-1
    DOI: 10.1007/s11269-020-02679-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-020-02679-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-020-02679-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shamsuddin Shahid & Manzul Hazarika, 2010. "Groundwater Drought in the Northwestern Districts of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1989-2006, August.
    2. Stephen Cook & Ashok Sharma & Meng Chong, 2013. "Performance Analysis of a Communal Residential Rainwater System for Potable Supply: A Case Study in Brisbane, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4865-4876, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nandi, Santosh & Gonela, Vinay, 2022. "Rainwater harvesting for domestic use: A systematic review and outlook from the utility policy and management perspectives," Utilities Policy, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    2. Imteaz, Monzur Alam & Paudel, Upendra & Ahsan, Amimul & Santos, Cristina, 2015. "Climatic and spatial variability of potential rainwater savings for a large coastal city," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 143-147.
    3. Liangxin Fan & Guobin Liu & Fei Wang & Coen Ritsema & Violette Geissen, 2014. "Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 853-865, February.
    4. Acharjee, Tapos Kumar & Halsema, Gerardo van & Ludwig, Fulco & Hellegers, Petra, 2017. "Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh," Agricultural Water Management, Elsevier, vol. 180(PA), pages 148-159.
    5. Tatek Temesgen & Mooyoung Han & Hyunju Park & Tschung-il Kim, 2016. "Policies and Strategies to Overcome Barriers to Rainwater Harvesting for Urban Use in Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5205-5215, November.
    6. Kirby, J.M. & Ahmad, M.D. & Mainuddin, M. & Palash, W. & Quadir, M.E. & Shah-Newaz, S.M. & Hossain, M.M., 2015. "The impact of irrigation development on regional groundwater resources in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 264-276.
    7. Sucharita Pradhan & Anirban Dhar & Kamlesh Narayan Tiwari, 2022. "On Quantification of Groundwater Dynamics Under Long-term Land Use Land Cover Transition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4039-4055, September.
    8. Najeebullah Khan & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim & Rawshan Ali, 2019. "Influence of Surface Water Bodies on the Land Surface Temperature of Bangladesh," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
    9. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    10. J. M. Kirby & M. Mainuddin & F. Mpelasoka & M. D. Ahmad & W. Palash & M.E. Quadir & S. M. Shah-Newaz & M. M. Hossain, 2016. "The impact of climate change on regional water balances in Bangladesh," Climatic Change, Springer, vol. 135(3), pages 481-491, April.
    11. Sucharita Pradhan & Anirban Dhar & Kamlesh Narayan Tiwari & Satiprasad Sahoo, 2023. "Spatiotemporal analysis of land use land cover and future simulation for agricultural sustainability in a sub-tropical region of India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7873-7902, August.
    12. Jersain Gómez Núñez & Magdalena García Martínez & Rojacques Mompremier & Beatriz A. González Beltrán & Icela Dagmar Barceló Quintal, 2022. "Methodology to Optimize Rainwater Tank-sizing and Cluster Configuration for a Group of Buildings," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5191-5205, October.
    13. Gurung, Thulo Ram & Stewart, Rodney A. & Sharma, Ashok K. & Beal, Cara D., 2014. "Smart meters for enhanced water supply network modelling and infrastructure planning," Resources, Conservation & Recycling, Elsevier, vol. 90(C), pages 34-50.
    14. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    15. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    16. Anna Musz-Pomorska & Marcin K. Widomski & Justyna Gołębiowska, 2020. "Financial Sustainability of Selected Rain Water Harvesting Systems for Single-Family House under Conditions of Eastern Poland," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    17. Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
    18. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    19. Yuan-Chien Lin & En-Dian Kuo & Wan-Ju Chi, 2021. "Analysis of Meteorological Drought Resilience and Risk Assessment of Groundwater Using Signal Analysis Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 179-197, January.
    20. Mahdi Soleimani Motlagh & Hoda Ghasemieh & Ali Talebi & Khodayar Abdollahi, 2017. "Identification and Analysis of Drought Propagation of Groundwater During Past and Future Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 109-125, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:34:y:2020:i:15:d:10.1007_s11269-020-02679-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.