IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v135y2016i3d10.1007_s10584-016-1597-1.html
   My bibliography  Save this article

The impact of climate change on regional water balances in Bangladesh

Author

Listed:
  • J. M. Kirby

    (CSIRO Land and Water)

  • M. Mainuddin

    (CSIRO Land and Water)

  • F. Mpelasoka

    (CSIRO Land and Water)

  • M. D. Ahmad

    (CSIRO Land and Water)

  • W. Palash

    (Tufts University)

  • M.E. Quadir

    (International University of Business Agriculture and Technology Uttara)

  • S. M. Shah-Newaz

    (Institute of Water Modelling)

  • M. M. Hossain

    (Institute of Water Modelling)

Abstract

The probable effect of climate change on the water available for use in Bangladesh is not well known. We calculate monthly water balances for five main regions of Bangladesh to examine the likely impacts of climate change to 2050. We also examine the impact of past and potential future irrigation development. Climate change projections for rainfall in Bangladesh are uncertain, with increased rain in the wet season likely, but decreased rain also possible. Runoff is projected to vary in a manner similar to rainfall. However, assuming no change to the area of crops, all projections result in increases in irrigation water use, which leads to groundwater level declines. The impact of change (whether climate change or development) on water availability and use is greater in the Northwest region than elsewhere. For most water balance terms in most regions, irrigation development (both historic and future) is calculated to have a larger impact than climate change. Climate change is calculated to have a larger impact than irrigation development only on evapotranspiration and runoff, and possibly on groundwater levels. Model sensitivity tests suggest that model uncertainty is less than climate change uncertainty. To reverse lowered groundwater levels, Bangladesh’s policy includes greater use of surface water. While we calculate groundwater levels will rise, the viability of the policy may be affected by future changes to upstream use.

Suggested Citation

  • J. M. Kirby & M. Mainuddin & F. Mpelasoka & M. D. Ahmad & W. Palash & M.E. Quadir & S. M. Shah-Newaz & M. M. Hossain, 2016. "The impact of climate change on regional water balances in Bangladesh," Climatic Change, Springer, vol. 135(3), pages 481-491, April.
  • Handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-016-1597-1
    DOI: 10.1007/s10584-016-1597-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1597-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1597-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Animesh Gain & Heiko Apel & Fabrice Renaud & Carlo Giupponi, 2013. "Thresholds of hydrologic flow regime of a river and investigation of climate change impact—the case of the Lower Brahmaputra river Basin," Climatic Change, Springer, vol. 120(1), pages 463-475, September.
    2. Animesh Gain & Yoshihide Wada, 2014. "Assessment of Future Water Scarcity at Different Spatial and Temporal Scales of the Brahmaputra River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 999-1012, March.
    3. Mobin-ud Ahmad & Mac Kirby & Mohammad Islam & Md. Hossain & Md. Islam, 2014. "Groundwater Use for Irrigation and its Productivity: Status and Opportunities for Crop Intensification for Food Security in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1415-1429, March.
    4. Shamsuddin Shahid & Manzul Hazarika, 2010. "Groundwater Drought in the Northwestern Districts of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1989-2006, August.
    5. Kirby, J.M. & Ahmad, M.D. & Mainuddin, M. & Palash, W. & Quadir, M.E. & Shah-Newaz, S.M. & Hossain, M.M., 2015. "The impact of irrigation development on regional groundwater resources in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 264-276.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urfels, Anton & Mausch, Kai & Harris, Dave & McDonald, Andrew J. & Kishore, Avinash & Balwinder-Singh, & van Halsema, Gerardo & Struik, Paul C. & Craufurd, Peter & Foster, Timothy & Singh, Vartika & K, 2023. "Farm size limits agriculture's poverty reduction potential in Eastern India even with irrigation-led intensification," Agricultural Systems, Elsevier, vol. 207(C).
    2. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    3. Saira Batool & Areeba Amer, 2022. "Wheat Productivity in Variable Climates," International Journal of Agriculture & Sustainable Development, 50sea, vol. 4(1), pages 1-8, February.
    4. Rowshon, M.K. & Dlamini, N.S. & Mojid, M.A. & Adib, M.N.M. & Amin, M.S.M. & Lai, S.H., 2019. "Modeling climate-smart decision support system (CSDSS) for analyzing water demand of a large-scale rice irrigation scheme," Agricultural Water Management, Elsevier, vol. 216(C), pages 138-152.
    5. Mohd Azmeer Abu Bakar & Asyirah Abdul Rahim & Norhayati Mat Ghani & Mohd Aiman Mohd Asri & Noor Janatun Naim Jemali & Cik Nur Kyariatul Syafinie Abdul Majid, 2024. "Importance of Forest Services in the Provision of Water Sources to the State of Penang, Peninsular Malaysia," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(10), pages 801-812, October.
    6. Amlan Haque & Anita Jahid, 2021. "Climate-change beliefs and resilience to climate change in Bangladesh: is leadership making any difference?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(4), pages 623-638, December.
    7. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    8. Mojid, Mohammad A. & Mainuddin, Mohammed & Murad, Khandakar Faisal Ibn & Kirby, John Mac, 2021. "Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – Evidence from Bangladesh," Agricultural Water Management, Elsevier, vol. 251(C).
    9. Islam, A.R.M.Towfiqul & Shen, Shuang-He & Yang, Shen-Bin, 2018. "Predicting design water requirement of winter paddy under climate change condition using frequency analysis in Bangladesh," Agricultural Water Management, Elsevier, vol. 195(C), pages 58-70.
    10. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    11. Md. Arif Chowdhury & Rashed Uz Zzaman & Nusrat Jahan Tarin & Mohammad Jobayer Hossain, 2022. "Spatial variability of climatic hazards in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2329-2351, February.
    12. Mohamed Mehana & Mohamed Abdelrahman & Yasmin Emadeldin & Jai S. Rohila & Raghupathy Karthikeyan, 2021. "Impact of Genetic Improvements of Rice on Its Water Use and Effects of Climate Variability in Egypt," Agriculture, MDPI, vol. 11(9), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    2. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    3. Mojid, Mohammad A. & Mainuddin, Mohammed & Murad, Khandakar Faisal Ibn & Kirby, John Mac, 2021. "Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – Evidence from Bangladesh," Agricultural Water Management, Elsevier, vol. 251(C).
    4. Kirby, J.M. & Ahmad, M.D. & Mainuddin, M. & Palash, W. & Quadir, M.E. & Shah-Newaz, S.M. & Hossain, M.M., 2015. "The impact of irrigation development on regional groundwater resources in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 264-276.
    5. Golam Saleh Ahmed Salem & So Kazama & Daisuke Komori & Shamsuddin Shahid & Nepal C. Dey, 2017. "Optimum Abstraction of Groundwater for Sustaining Groundwater Level and Reducing Irrigation Cost," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1947-1959, April.
    6. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    7. Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
    8. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    9. Yuan-Chien Lin & En-Dian Kuo & Wan-Ju Chi, 2021. "Analysis of Meteorological Drought Resilience and Risk Assessment of Groundwater Using Signal Analysis Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 179-197, January.
    10. Roquia Salam & Abu Reza Md. Towfiqul Islam & Shakibul Islam, 2020. "Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4509-4535, June.
    11. M. W. Straatsma & P. T. M. Vermeulen & M. J. M. Kuijper & M. Bonte & F. G. M. Niele & M. F. P. Bierkens, 2016. "Rapid Screening of Operational Freshwater Availability Using Global Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3013-3026, July.
    12. Mahdi Soleimani Motlagh & Hoda Ghasemieh & Ali Talebi & Khodayar Abdollahi, 2017. "Identification and Analysis of Drought Propagation of Groundwater During Past and Future Periods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 109-125, January.
    13. Awada, Hassan & Di Prima, Simone & Sirca, Costantino & Giadrossich, Filippo & Marras, Serena & Spano, Donatella & Pirastru, Mario, 2022. "A remote sensing and modeling integrated approach for constructing continuous time series of daily actual evapotranspiration," Agricultural Water Management, Elsevier, vol. 260(C).
    14. Zafar Hussain & Zongmin Wang & Jiaxue Wang & Haibo Yang & Muhammad Arfan & Daniyal Hassan & Wusen Wang & Muhammad Imran Azam & Muhammad Faisal, 2022. "A comparative Appraisal of Classical and Holistic Water Scarcity Indicators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 931-950, February.
    15. Neera Shrestha Pradhan & Partha Jyoti Das & Nishikant Gupta & Arun Bhakta Shrestha, 2021. "Sustainable Management Options for Healthy Rivers in South Asia: The Case of Brahmaputra," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    16. Tapos Kumar Acharjee & Petra Hellegers & Fulco Ludwig & Gerardo Halsema & Md. Abdul Mojid & Catharien Terwisscha Scheltinga, 2020. "Prioritization of adaptation measures for improved agricultural water management in Northwest Bangladesh," Climatic Change, Springer, vol. 163(1), pages 431-450, November.
    17. Acharjee, Tapos Kumar & Halsema, Gerardo van & Ludwig, Fulco & Hellegers, Petra, 2017. "Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh," Agricultural Water Management, Elsevier, vol. 180(PA), pages 148-159.
    18. Subbarao Pichuka & Rajib Maity, 2020. "Assessment of Extreme Precipitation in Future through Time-Invariant and Time-Varying Downscaling Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1809-1826, March.
    19. Kayhomayoon, Zahra & Jamnani, Mostafa Rahimi & Rashidi, Sajjad & Ghordoyee Milan, Sami & Arya Azar, Naser & Berndtsson, Ronny, 2023. "Soft computing assessment of current and future groundwater resources under CMIP6 scenarios in northwestern Iran," Agricultural Water Management, Elsevier, vol. 285(C).
    20. Traverso, Silvio, 2016. "How to escape from a poverty trap: The case of Bangladesh," World Development Perspectives, Elsevier, vol. 4(C), pages 48-59.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:135:y:2016:i:3:d:10.1007_s10584-016-1597-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.