IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6754-d291927.html
   My bibliography  Save this article

Influence of Surface Water Bodies on the Land Surface Temperature of Bangladesh

Author

Listed:
  • Najeebullah Khan

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
    Faculty of Engineering Science and Technology, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal 90150, Pakistan)

  • Shamsuddin Shahid

    (School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia)

  • Eun-Sung Chung

    (Department of Civil Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

  • Sungkon Kim

    (Department of Civil Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea)

  • Rawshan Ali

    (College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China
    Department of Petroleum, Koya Technical Institute, Erbil Polytechnic University, Erbil 44001, Iraq)

Abstract

Recent climate change has resulted in the reduction of several surface water bodies (SWBs) all around the globe. These SWBs, such as streams, rivers, lakes, wetlands, reservoirs, and creeks have a positive impact on the cooling of the surrounding climate and, therefore, reduction in SWBs can contribute to the rise of land surface temperature (LST). This study presents the impact of SWBs on the LST across Bangladesh to quantify their roles in the rapid temperature rise of Bangladesh. The moderate resolution imaging spectroradiometer (MODIS) LST and water mask data of Bangladesh for the period 2000–2015 are used for this purpose. Influences of topography and geography on LST were first removed, and then regression analysis was conducted to quantify the impact of SWBs on the LST. The non-parametric Mann–Kendall (MK) test was used to assess the changes in LST and SWBs. The results revealed that SWBs were reduced from 11,379 km 2 in 2000 to 9657 km 2 in 2015. The trend analysis showed that changes in SWBs have reduced significantly at a 90% level of confidence, which contributed to the acceleration of LST rise in the country due to global warming. The spatial analysis during the specific years showed that an increase in LST can be seen with the reduction of SWBs. Furthermore, the reduction of 100 m 2 of SWBs can reduce the LST of the surrounding regions from −1.2 to −2.2 °C.

Suggested Citation

  • Najeebullah Khan & Shamsuddin Shahid & Eun-Sung Chung & Sungkon Kim & Rawshan Ali, 2019. "Influence of Surface Water Bodies on the Land Surface Temperature of Bangladesh," Sustainability, MDPI, vol. 11(23), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6754-:d:291927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6754/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6754/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin Huang & Jiyuan Liu & Quanqin Shao & Ronggao Liu, 2011. "Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau," Climatic Change, Springer, vol. 109(3), pages 479-502, December.
    2. Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
    3. Shamsuddin Shahid & Manzul Hazarika, 2010. "Groundwater Drought in the Northwestern Districts of Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1989-2006, August.
    4. Sahar Hadi Pour & Ahmad Khairi Abd Wahab & Shamsuddin Shahid & Xiaojun Wang, 2019. "Spatial Pattern of the Unidirectional Trends in Thermal Bioclimatic Indicators in Iran," Sustainability, MDPI, vol. 11(8), pages 1-24, April.
    5. Shamsuddin Shahid & Houshang Behrawan, 2008. "Drought risk assessment in the western part of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(3), pages 391-413, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaihua Zhang & Guoliang Yun & Peihao Song & Kun Wang & Ang Li & Chenyu Du & Xiaoli Jia & Yuan Feng & Meng Wu & Kexin Qu & Xiaoxue Zhu & Shidong Ge, 2023. "Discover the Desirable Landscape Structure of Urban Parks for Mitigating Urban Heat: A High Spatial Resolution Study Using a Forest City, Luoyang, China as a Lens," IJERPH, MDPI, vol. 20(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golam Saleh Ahmed Salem & So Kazama & Shamsuddin Shahid & Nepal C. Dey, 2018. "Groundwater-dependent irrigation costs and benefits for adaptation to global change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 953-979, August.
    2. Acharjee, Tapos Kumar & Ludwig, Fulco & van Halsema, Gerardo & Hellegers, Petra & Supit, Iwan, 2017. "Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 194(C), pages 172-183.
    3. Tapos Kumar Acharjee & Petra Hellegers & Fulco Ludwig & Gerardo Halsema & Md. Abdul Mojid & Catharien Terwisscha Scheltinga, 2020. "Prioritization of adaptation measures for improved agricultural water management in Northwest Bangladesh," Climatic Change, Springer, vol. 163(1), pages 431-450, November.
    4. Acharjee, Tapos Kumar & Halsema, Gerardo van & Ludwig, Fulco & Hellegers, Petra, 2017. "Declining trends of water requirements of dry season Boro rice in the north-west Bangladesh," Agricultural Water Management, Elsevier, vol. 180(PA), pages 148-159.
    5. Sumaiya Jarin Ahammed & Rajab Homsi & Najeebullah Khan & Shamsuddin Shahid & Mohammed Sanusi Shiru & Morteza Mohsenipour & Kamal Ahmed & Nadeem Nawaz & Nor Eliza Alias & Ali Yuzir, 2020. "Assessment of changing pattern of crop water stress in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4619-4637, June.
    6. Dimitrios Myronidis & Dimitrios Stathis & Konstantinos Ioannou & Dimitrios Fotakis, 2012. "An Integration of Statistics Temporal Methods to Track the Effect of Drought in a Shallow Mediterranean Lake," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4587-4605, December.
    7. Mobin-ud Ahmad & Mac Kirby & Mohammad Islam & Md. Hossain & Md. Islam, 2014. "Groundwater Use for Irrigation and its Productivity: Status and Opportunities for Crop Intensification for Food Security in Bangladesh," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1415-1429, March.
    8. Mahiuddin Alamgir & Morteza Mohsenipour & Rajab Homsi & Xiaojun Wang & Shamsuddin Shahid & Mohammed Sanusi Shiru & Nor Eliza Alias & Ali Yuzir, 2019. "Parametric Assessment of Seasonal Drought Risk to Crop Production in Bangladesh," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    9. Salem, Golam Saleh Ahmed & Kazama, So & Shahid, Shamsuddin & Dey, Nepal C., 2018. "Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region," Agricultural Water Management, Elsevier, vol. 208(C), pages 33-42.
    10. Md Abdullah Salman & Faisal Ahmed, 2020. "Climatology In Barishal, Bangladesh: A Historical Analysis Of Temperature, Rainfall, Wind Speed And Relative Humidity Data," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 4(1), pages 43-53, September.
    11. S. D. Sachini Kaushalya Dissanayake & Yuanshu Jing & Tharana Inu Laksith, 2024. "Assessing Drought Risk and the Influence of Climate Projections in Sri Lanka for Sustainable Drought Mitigation via Geospatial Techniques," Sustainability, MDPI, vol. 16(23), pages 1-17, November.
    12. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    13. Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
    14. Mondol, Md Anarul Haque & Zhu, Xuan & Dunkerley, David & Henley, Benjamin J., 2021. "Observed meteorological drought trends in Bangladesh identified with the Effective Drought Index (EDI)," Agricultural Water Management, Elsevier, vol. 255(C).
    15. Berggreen, Steve & Mattisson, Linn, 2023. "The Curse of Bad Geography: Stagnant Water, Diseases, and Children’s Human Capital," Working Papers 2023:11, Lund University, Department of Economics.
    16. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    17. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Hyungjin Shin & Gyumin Lee & Jaenam Lee & Sehoon Kim & Inhong Song, 2023. "Assessment of Agricultural Drought Vulnerability with Focus on Upland Fields and Identification of Primary Management Areas," Sustainability, MDPI, vol. 15(3), pages 1-16, February.
    19. Marivoet, Wim & Ulimwengu, John M., 2024. "Spatial typology for food system analysis: Taking stock and setting a research agenda," World Development Perspectives, Elsevier, vol. 35(C).
    20. Vladimir Marković & Imre Nagy & Andras Sik & Kinga Perge & Peter Laszlo & Maria Papathoma-Köhle & Catrin Promper & Thomas Glade, 2016. "Assessing drought and drought-related wildfire risk in Kanjiza, Serbia: the SEERISK methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 709-726, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6754-:d:291927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.