IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i8p2697-2714.html
   My bibliography  Save this article

Risk Assessment of Groundwater and its Application. Part I: Risk Grading Based on the Functional Zoning of Groundwater

Author

Listed:
  • Fawen Li
  • Yong Zhao
  • Ping Feng
  • Wei Zhang
  • Jiale Qiao

Abstract

The functional zoning of groundwater is the basis for the rational development and utilization, scientific management and effective protection of groundwater. Based on the distribution, type, hydrogeological condition and exploitation status of groundwater in Tianjin, and considering the resource supply, ecological environment maintenance and geological environment stability simultaneously, the function zoning of shallow groundwater has been divided into the non-central water supply area in built-up zones, the fragile marsh zones, the fragile nature reserve zones, the polluted groundwater zones and the salt water zones. And the deep groundwater has been divided into the non-central water supply area in built-up zones, the central supply area in built-up zones, the land subsidence zones, polluted groundwater zones and the salt water descending zones. Firstly, this paper selected dominant factors of groundwater development and utilization risk based on the different groundwater function zoning results, distinguished them into natural factors and human factors, and developed the risk assessment index systems. Secondly, the risk assessment systems for shallow and deep groundwater were built according to the characteristics of respective aquifers, and the weight of each evaluation index was calculated by AHP (Analytic Hierarchy Process) method. Then, each of the unit risk grade was determined by the method of fuzzy synthetic evaluation on basis of these index attributes and the corresponding weights, and results were distributed in space using ArcGIS to obtain the groundwater risk grade map of various aquifers in different groundwater function zones of Tianjin city. Finally, the risk grade in each district of Tianjin was determined by superimposing the district boundaries on these maps. Groundwater development and utilization risk grades based on the functional zoning of groundwater can provide a scientific basis for management of groundwater and a method for determining groundwater level. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Fawen Li & Yong Zhao & Ping Feng & Wei Zhang & Jiale Qiao, 2015. "Risk Assessment of Groundwater and its Application. Part I: Risk Grading Based on the Functional Zoning of Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2697-2714, June.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:8:p:2697-2714
    DOI: 10.1007/s11269-015-0964-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-0964-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-0964-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donglin Dong & Wenjie Sun & Zhaochang Zhu & Sha Xi & Gang Lin, 2013. "Groundwater Risk Assessment of the Third Aquifer in Tianjin City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3179-3190, June.
    2. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    3. A. Yang & G. Huang & X. Qin, 2010. "An Integrated Simulation-Assessment Approach for Evaluating Health Risks of Groundwater Contamination Under Multiple Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3349-3369, October.
    4. Xiaosi Su & Huang Wang & Yuling Zhang, 2013. "Health Risk Assessment of Nitrate Contamination in Groundwater: A Case Study of an Agricultural Area in Northeast China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3025-3034, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rick Hogeboom & Pieter Oel & Maarten Krol & Martijn Booij, 2015. "Modelling the Influence of Groundwater Abstractions on the Water Level of Lake Naivasha, Kenya Under Data-Scarce Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4447-4463, September.
    2. Robert Duda & Robert Zdechlik & Jarosław Kania, 2021. "Semiquantitative Risk Assessment Method for Groundwater Source Protection Using a Process-based Interdisciplinary Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3373-3394, August.
    3. Georgios K. Koulinas & Alexandros S. Xanthopoulos & Konstantinos A. Sidas & Dimitrios E. Koulouriotis, 2021. "Risks Ranking in a Desalination Plant Construction Project with a Hybrid AHP, Risk Matrix, and Simulation-Based Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3221-3233, August.
    4. Kun Cheng & Qiang Fu & Xi Chen & Tianxiao Li & Qiuxiang Jiang & Xiaosong Ma & Ke Zhao, 2015. "Adaptive Allocation Modeling for a Complex System of Regional Water and Land Resources Based on Information Entropy and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4977-4993, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fawen Li & Jiale Qiao & Yong Zhao & Wei Zhang, 2014. "Risk Assessment of Groundwater and its Application. Part II: Using a Groundwater Risk Maps to Determine Control Levels of the Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4875-4893, October.
    2. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    3. B. Jianmin & W. Yu & Z. Juan, 2015. "Arsenic and fluorine in groundwater in western Jilin Province, China: occurrence and health risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1903-1914, July.
    4. Hanan G. Jacoby & Ghazala Mansuri, 2018. "Governing the Commons? Water and Power in Pakistan’s Indus Basin," Working Papers id:12933, eSocialSciences.
    5. Muhammad Aslam & Muhammad Arshad & Vijay P. Singh & Muhammad Adnan Shahid, 2022. "Hydrological Modeling of Aquifer’s Recharge and Discharge Potential by Coupling WetSpass and MODFLOW for the Chaj Doab, Pakistan," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    6. Fakhri Manghi & Dennis Williams & Jack Safely & Moshrik Hamdi, 2012. "Groundwater Flow Modeling of the Arlington Basin to Evaluate Management Strategies for Expansion of the Arlington Desalter Water Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 21-41, January.
    7. Yang Jin & Quanping Zhou & Xiaolong Wang & Hong Zhang & Guoqiang Yang & Ting Lei & Shijia Mei & Hai Yang & Lin Liu & Hui Yang & Jinsong Lv & Yuehua Jiang, 2022. "Heavy Metals in the Mainstream Water of the Yangtze River Downstream: Distribution, Sources and Health Risk Assessment," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    8. Xiaosi Su & Huang Wang & Yuling Zhang, 2013. "Health Risk Assessment of Nitrate Contamination in Groundwater: A Case Study of an Agricultural Area in Northeast China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3025-3034, June.
    9. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    10. Leah Grout & Simon Hales & Nigel French & Michael G. Baker, 2018. "A Review of Methods for Assessing the Environmental Health Impacts of an Agricultural System," IJERPH, MDPI, vol. 15(7), pages 1-27, June.
    11. Abbas Afshar & Mohamad Amin Tavakoli & Ali Khodagholi, 2020. "Multi-Objective Hydro-Economic Modeling for Sustainable Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1855-1869, April.
    12. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    13. Zhong-kai Feng & Wen-jing Niu & Zhi-qiang Jiang & Hui Qin & Zhen-guo Song, 2020. "Monthly Operation Optimization of Cascade Hydropower Reservoirs with Dynamic Programming and Latin Hypercube Sampling for Dimensionality Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2029-2041, April.
    14. Roberts, Anna M. & Pannell, David J. & Doole, Graeme & Vigiak, Olga, 2012. "Agricultural land management strategies to reduce phosphorus loads in the Gippsland Lakes, Australia," Agricultural Systems, Elsevier, vol. 106(1), pages 11-22.
    15. Junaid Alam Memon & Mehwish Qudoos Alizai & Anwar Hussain, 2020. "Who will think outside the sink? Farmers’ willingness to invest in technologies for groundwater sustainability in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4425-4445, June.
    16. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    17. Love Kumar & Ramna Kumari & Avinash Kumar & Imran Aziz Tunio & Claudio Sassanelli, 2023. "Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review," Sustainability, MDPI, vol. 15(7), pages 1-38, April.
    18. Simons, G.W.H. & Bastiaanssen, W.G.M. & Cheema, M.J.M. & Ahmad, B. & Immerzeel, W.W., 2020. "A novel method to quantify consumed fractions and non-consumptive use of irrigation water: Application to the Indus Basin Irrigation System of Pakistan," Agricultural Water Management, Elsevier, vol. 236(C).
    19. Bin Ou & Abudukeyimu Abulizi & Abudoukeremujiang Zayiti & Jiao Jiang & Adila Akbar & Tingting Yu, 2023. "Ecological Risk Zoning Control in Zhundong Economic Development Zone Based on Landscape Pattern Changes," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    20. Muhammad Waqar Akram & Nida Akram & Hongshu Wang & Shahla Andleeb & Khalil Ur Rehman & Umair Kashif & Syed Farhaan Hassan, 2020. "Socioeconomics Determinants to Adopt Agricultural Machinery for Sustainable Organic Farming in Pakistan: A Multinomial Probit Model," Sustainability, MDPI, vol. 12(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:8:p:2697-2714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.