IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i13p4875-4893.html
   My bibliography  Save this article

Risk Assessment of Groundwater and its Application. Part II: Using a Groundwater Risk Maps to Determine Control Levels of the Groundwater

Author

Listed:
  • Fawen Li
  • Jiale Qiao
  • Yong Zhao
  • Wei Zhang

Abstract

With the rapid development of economy, demand of water resources is becoming larger and larger, and over-exploitation of groundwater is common in many areas. Due to over-exploitation of groundwater over many years, a number of potential adverse hydrogeological problems have raised. To reduce such adverse effects, it is necessary to carry out strict groundwater management in over-exploited areas. And to achieve the strictest management of groundwater, it is critical to determine control levels of groundwater including the blue line levels (proper levels) and red line levels (warning levels). According to the establishment of evaluation model of shallow and deep groundwater exploitation and utilization risks, it can be observed that the groundwater level index factor is included in the evaluation index system in different groundwater function zones. Therefore, there is a corresponding relationship between the risk grade and groundwater level of different underground aquifers. The risk grade of different groundwater function zones in Tianjin is divided into five grades, which contributes to the risk management of groundwater, avoiding the arising of a wide range of risk management measure. However, to determine the key groundwater level, the standard of five grades cannot meet the requirements. The risk grades need to be divided more subtly. Hence, in this paper, the risk grade was divided according to the standard of sixteen grades based on that of five grades in the first place. The higher the grade is, the greater the risk. And then the occurrence frequency of risk grade for each aquifer was counted in each administrative district or country. The corresponding water level of the risk grade, whose occurrence frequency was the highest, served as the base level. The water level of groundwater that would be exploited and utilized in the future cannot be below this base level. In consequence, this water level that served as the red line level was the minimum requirement in the planning years, while the corresponding water levels of other risk grades that were inferior to this risk grade can all be seen as red line levels. And the planning period the long-term corresponding groundwater level of the aquifers under mining-banned condition can be used as blue line control levels of the different planning years. Finally, according to the determinate range of red line level change amplitude in each district or country, as well as the ultimate restoration aim of groundwater levels (blue line levels), corresponding measures were taken step by step to achieve the overall rising of groundwater levels. The obtained determinate control levels can provide a scientific basis for dynamic management of groundwater. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Fawen Li & Jiale Qiao & Yong Zhao & Wei Zhang, 2014. "Risk Assessment of Groundwater and its Application. Part II: Using a Groundwater Risk Maps to Determine Control Levels of the Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4875-4893, October.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:13:p:4875-4893
    DOI: 10.1007/s11269-014-0784-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0784-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0784-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fawen Li & Ping Feng & Wei Zhang & Ting Zhang, 2013. "An Integrated Groundwater Management Mode Based on Control Indexes of Groundwater Quantity and Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3273-3292, July.
    2. Donglin Dong & Wenjie Sun & Zhaochang Zhu & Sha Xi & Gang Lin, 2013. "Groundwater Risk Assessment of the Third Aquifer in Tianjin City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3179-3190, June.
    3. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    4. Purna Nayak & Y. Rao & K. Sudheer, 2006. "Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 77-90, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu Qiang & Li Bo & Chen Yulong, 2016. "Vulnerability Assessment of Groundwater Inrush from Underlying Aquifers Based on Variable Weight Model and its Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3331-3345, August.
    2. Dongbo Li & Xiaolong Li & Xinlin He & Guang Yang & Yongjun Du & Xiaoqian Li, 2022. "Groundwater Dynamic Characteristics with the Ecological Threshold in the Northwest China Oasis," Sustainability, MDPI, vol. 14(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fawen Li & Yong Zhao & Ping Feng & Wei Zhang & Jiale Qiao, 2015. "Risk Assessment of Groundwater and its Application. Part I: Risk Grading Based on the Functional Zoning of Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2697-2714, June.
    2. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    3. Hanan G. Jacoby & Ghazala Mansuri, 2018. "Governing the Commons? Water and Power in Pakistan’s Indus Basin," Working Papers id:12933, eSocialSciences.
    4. Ioannis Trichakis & Ioannis Nikolos & G. Karatzas, 2011. "Artificial Neural Network (ANN) Based Modeling for Karstic Groundwater Level Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1143-1152, March.
    5. Muhammad Aslam & Muhammad Arshad & Vijay P. Singh & Muhammad Adnan Shahid, 2022. "Hydrological Modeling of Aquifer’s Recharge and Discharge Potential by Coupling WetSpass and MODFLOW for the Chaj Doab, Pakistan," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    6. Fakhri Manghi & Dennis Williams & Jack Safely & Moshrik Hamdi, 2012. "Groundwater Flow Modeling of the Arlington Basin to Evaluate Management Strategies for Expansion of the Arlington Desalter Water Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 21-41, January.
    7. Abbas Roozbahani & Ebrahim Ebrahimi & Mohammad Ebrahim Banihabib, 2018. "A Framework for Ground Water Management Based on Bayesian Network and MCDM Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 4985-5005, December.
    8. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    9. Chattopadhyay, Pallavi Banerjee & Rangarajan, R., 2014. "Application of ANN in sketching spatial nonlinearity of unconfined aquifer in agricultural basin," Agricultural Water Management, Elsevier, vol. 133(C), pages 81-91.
    10. Sandra M. Guzman & Joel O. Paz & Mary Love M. Tagert, 2017. "The Use of NARX Neural Networks to Forecast Daily Groundwater Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1591-1603, March.
    11. Abbas Afshar & Mohamad Amin Tavakoli & Ali Khodagholi, 2020. "Multi-Objective Hydro-Economic Modeling for Sustainable Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1855-1869, April.
    12. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    13. S. Mohanty & Madan Jha & S. Raul & R. Panda & K. Sudheer, 2015. "Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5521-5532, December.
    14. Raymond Kim & Daniel Loucks & Jery Stedinger, 2012. "Artificial Neural Network Models of Watershed Nutrient Loading," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2781-2797, August.
    15. Mojtaba Shourian & S. M. Javad Davoudi, 2017. "Optimum Pumping Well Placement and Capacity Design for a Groundwater Lowering System in Urban Areas with the Minimum Cost Objective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4207-4225, October.
    16. L. Karthikeyan & D. Kumar & Didier Graillot & Shishir Gaur, 2013. "Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 871-883, February.
    17. Junaid Alam Memon & Mehwish Qudoos Alizai & Anwar Hussain, 2020. "Who will think outside the sink? Farmers’ willingness to invest in technologies for groundwater sustainability in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4425-4445, June.
    18. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    19. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    20. Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:13:p:4875-4893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.