IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v271y2022ics0378377422003699.html
   My bibliography  Save this article

A methodological framework for modeling sustainability visions: A case study of groundwater management in Faizpur distributary, Pakistan

Author

Listed:
  • Noor, Rabeea
  • Inam, Azhar
  • Zahra, Syeda Mishal
  • Shoaib, Muhammad
  • Riaz, Rameen
  • Sarwar, Aneela
  • Asif, Muhammad
  • Ahmad, Shakil

Abstract

Over the last two decades, participatory modeling has been advocated as an effective method towards integrated, adaptive, and collaborative water resources management. However, in developing countries, such as Pakistan, its adaptation is limited due to high cost, time, and technical skills of stakeholders. The proposed research aims to develop a stepwise participatory modeling framework with special focus to the problem of groundwater depletion in the Faizpur distributary of Bari Doab basin, Pakistan. Currently, due to absence of a well define groundwater management policy together with low social awareness level, groundwater sustainability is at risk in term of its quality and quantity. For participatory modeling individual causal loop diagrams were developed with potential stakeholders, followed by a merged causal loop diagram to represent a holistic view of the complete system. The final merged diagram helps in understanding different system processes and allows for a more comprehensive qualitative assessment of stakeholder proposed policies. Among other proposed policies (e.g., revise cropping pattern, gray water reuse, and construction of dams) water pricing is found to be the most effective policy. This policy proved to be helpful in improving irrigation efficiency and hence helps in reducing groundwater extraction. The policy may face resistance from upstream farmers due to excessive and cheap availability of irrigation water in their area, but can help in water reallocation and shift traditional methods of farming to more advanced techniques. The results point to social-economic aspects of groundwater management that have not been considered by other modeling studies to date. Moreover, this approach can improve the role of local stakeholder in decision-making processes concerning socio-environmental regulation and climate change mitigation policies.

Suggested Citation

  • Noor, Rabeea & Inam, Azhar & Zahra, Syeda Mishal & Shoaib, Muhammad & Riaz, Rameen & Sarwar, Aneela & Asif, Muhammad & Ahmad, Shakil, 2022. "A methodological framework for modeling sustainability visions: A case study of groundwater management in Faizpur distributary, Pakistan," Agricultural Water Management, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003699
    DOI: 10.1016/j.agwat.2022.107822
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    2. Qureshi, A. S. & Shah, T. & Akhtar, M, 2003. "The groundwater economy of Pakistan," IWMI Working Papers H033572, International Water Management Institute.
    3. William L. Hargrove & Josiah M. Heyman, 2020. "A Comprehensive Process for Stakeholder Identification and Engagement in Addressing Wicked Water Resources Problems," Land, MDPI, vol. 9(4), pages 1-21, April.
    4. C. E. Richards & R. C. Lupton & J. M. Allwood, 2021. "Re-framing the threat of global warming: an empirical causal loop diagram of climate change, food insecurity and societal collapse," Climatic Change, Springer, vol. 164(3), pages 1-19, February.
    5. Juan Carlos Castilla-Rho & Rodrigo Rojas & Martin S. Andersen & Cameron Holley & Gregoire Mariethoz, 2017. "Social tipping points in global groundwater management," Nature Human Behaviour, Nature, vol. 1(9), pages 640-649, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zanini, Sara, 2023. "Water challenges in socio-ecological systems: is human decision-making accounted for in the analysis of climate change adaptation options?," FEEM Working Papers 333364, Fondazione Eni Enrico Mattei (FEEM).
    2. Sara Floriani Zanini, 2023. "Water challenges in socio-ecological systems: is human decision-making accounted for in the analysis of climate change adaptation options?," Working Papers 2023.06, Fondazione Eni Enrico Mattei.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Mohsin Waqas & Muhammad Waseem & Sikandar Ali & Megersa Kebede Leta & Adnan Noor Shah & Usman Khalid Awan & Syed Hamid Hussain Shah & Tao Yang & Sami Ullah, 2021. "Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach," Sustainability, MDPI, vol. 13(15), pages 1-20, August.
    2. Sobia Asghar & Nophea Sasaki & Damien Jourdain & Takuji W. Tsusaka, 2018. "Levels of Technical, Allocative, and Groundwater Use Efficiency and the Factors Affecting the Allocative Efficiency of Wheat Farmers in Pakistan," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    3. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    4. Hanan G. Jacoby & Ghazala Mansuri, 2018. "Governing the Commons? Water and Power in Pakistan’s Indus Basin," Working Papers id:12933, eSocialSciences.
    5. Marion Payen & Patrick Rondé, 2020. "Culture, Institutions and Economic Growth," Working Papers of BETA 2020-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    6. Muhammad Aslam & Muhammad Arshad & Vijay P. Singh & Muhammad Adnan Shahid, 2022. "Hydrological Modeling of Aquifer’s Recharge and Discharge Potential by Coupling WetSpass and MODFLOW for the Chaj Doab, Pakistan," Sustainability, MDPI, vol. 14(8), pages 1-17, April.
    7. Fakhri Manghi & Dennis Williams & Jack Safely & Moshrik Hamdi, 2012. "Groundwater Flow Modeling of the Arlington Basin to Evaluate Management Strategies for Expansion of the Arlington Desalter Water Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 21-41, January.
    8. Kai Zhang & Haishu Lu & Bin Wang, 2024. "Benefit Distribution Mechanism of a Cooperative Alliance for Basin Water Resources from the Perspective of Cooperative Game Theory," Sustainability, MDPI, vol. 16(16), pages 1-33, August.
    9. Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
    10. Seul-gi Lee & Bashir Adelodun & Mirza Junaid Ahmad & Kyung Sook Choi, 2022. "Multi-Level Prioritization Analysis of Water Governance Components to Improve Agricultural Water-Saving Policy: A Case Study from Korea," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
    11. Andrew Kliskey & Paula Williams & David L. Griffith & Virginia H. Dale & Chelsea Schelly & Anna-Maria Marshall & Valoree S. Gagnon & Weston M. Eaton & Kristin Floress, 2021. "Thinking Big and Thinking Small: A Conceptual Framework for Best Practices in Community and Stakeholder Engagement in Food, Energy, and Water Systems," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    12. Fawen Li & Yong Zhao & Ping Feng & Wei Zhang & Jiale Qiao, 2015. "Risk Assessment of Groundwater and its Application. Part I: Risk Grading Based on the Functional Zoning of Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2697-2714, June.
    13. Afreen Siddiqi & James L. Wescoat, 2013. "Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan," Water International, Taylor & Francis Journals, vol. 38(5), pages 571-586, September.
    14. Abbas Afshar & Mohamad Amin Tavakoli & Ali Khodagholi, 2020. "Multi-Objective Hydro-Economic Modeling for Sustainable Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1855-1869, April.
    15. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    16. Koehler, Johanna & Thomson, Patrick & Goodall, Susanna & Katuva, Jacob & Hope, Rob, 2021. "Institutional pluralism and water user behavior in rural Africa," World Development, Elsevier, vol. 140(C).
    17. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    18. Méjean, Aurélie & Pottier, Antonin & Zuber, Stéphane & Fleurbaey, Marc, 2023. "Opposite ethical views converge under the threat of catastrophic climate change," Ecological Economics, Elsevier, vol. 212(C).
    19. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    20. Junaid Alam Memon & Mehwish Qudoos Alizai & Anwar Hussain, 2020. "Who will think outside the sink? Farmers’ willingness to invest in technologies for groundwater sustainability in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4425-4445, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.