IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i7p2139-2152.html
   My bibliography  Save this article

Groundwater Storage and Depletion Trends in Tamil Nadu State, India

Author

Listed:
  • Pennan Chinnasamy
  • Govindasamy Agoramoorthy

Abstract

Groundwater irrigation is the most predominant method used across India. The south Indian state of Tamil Nadu is one of the largest producers of agricultural products, and is largely dependent on groundwater for irrigation. The impact of increased irrigation due to intensification of agricultural activities on groundwater levels has not been well researched, both spatially and temporally. Hence this study has used remote sensing data from NASA’s Gravity Recovery and Climate Experiment and the Global Land Data Assimilation Systems to assess the total change in groundwater storage across the state of Tamil Nadu over a period of 11 years, from 2002 to 2012. The results show groundwater depletion at the rate of 21.4 km 3 yr −1 , which is 8% more than the annual recharge rate (19.81 km 3 yr −1 ) owing to the total rainfall of 1016 mm yr 1 . Maximum depletion was observed in 2008, while the least depletion was observed in 2002 with rates of 41.15 and 0.32 cm yr −1 , respectively. Districts such as Dharmapuri, Vellore and Thiruvannamali encountered intense groundwater depletion. Observed spatiotemporal groundwater storage will benefit India’s water resource managers and policymakers for the future management of groundwater resources to enhance food and water security. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Pennan Chinnasamy & Govindasamy Agoramoorthy, 2015. "Groundwater Storage and Depletion Trends in Tamil Nadu State, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2139-2152, May.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:7:p:2139-2152
    DOI: 10.1007/s11269-015-0932-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-0932-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-0932-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Chowdary & D. Ramakrishnan & Y. Srivastava & Vinu Chandran & A. Jeyaram, 2009. "Integrated Water Resource Development Plan for Sustainable Management of Mayurakshi Watershed, India using Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1581-1602, June.
    2. Isabella Velicogna & John Wahr, 2006. "Acceleration of Greenland ice mass loss in spring 2004," Nature, Nature, vol. 443(7109), pages 329-331, September.
    3. Shah, T., 2003. "Sustaining Asia's groundwater boom: an overview of issues and evidence," IWMI Books, Reports H043763, International Water Management Institute.
    4. Rajendra Poddar & M. Qureshi & Tian Shi, 2014. "A Comparison of Water Policies for Sustainable Irrigation Management: The Case of India and Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1079-1094, March.
    5. Asad Qureshi & Peter McCornick & A. Sarwar & Bharat Sharma, 2010. "Challenges and Prospects of Sustainable Groundwater Management in the Indus Basin, Pakistan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1551-1569, June.
    6. Madan Jha & Alivia Chowdhury & V. Chowdary & Stefan Peiffer, 2007. "Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 427-467, February.
    7. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    8. Burness, H. Stuart & Brill, Thomas C., 2001. "The role for policy in common pool groundwater use," Resource and Energy Economics, Elsevier, vol. 23(1), pages 19-40, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.
    2. Leelambar Singh & Subbarayan Saravanan & J. Jacinth Jennifer & D. Abijith, 2021. "Application of multi-influence factor (MIF) technique for the identification of suitable sites for urban settlement in Tiruchirappalli City, Tamil Nadu, India," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 797-823, October.
    3. Ning Nie & Wanchang Zhang & Zhijie Zhang & Huadong Guo & Natarajan Ishwaran, 2016. "Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 279-294, January.
    4. Sanaz Moghim, 2020. "Assessment of Water Storage Changes Using GRACE and GLDAS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 685-697, January.
    5. Ning Nie & Wanchang Zhang & Zhijie Zhang & Huadong Guo & Natarajan Ishwaran, 2016. "Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 279-294, January.
    6. Shenggen Fan, 2016. "A Nexus Approach to Food, Water, and Energy: Sustainably Meeting Asia’s Future Food and Nutrition Requirements," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 55(4), pages 297-311.
    7. Chinnasamy, Pennan & Maheshwari, Basant & Dillon, Peter & Purohit, Ramesh & Dashora, Yogita & Soni, Prahlad & Dashora, Ragini, 2018. "Estimation of specific yield using water table fluctuations and cropped area in a hardrock aquifer system of Rajasthan, India," Agricultural Water Management, Elsevier, vol. 202(C), pages 146-155.
    8. Pooja Preetha & Mahbub Hasan, 2023. "Scrutinizing the Hydrological Responses of Chennai, India Using Coupled SWAT-FEM Model under Land Use Land Cover and Climate Change Scenarios," Land, MDPI, vol. 12(5), pages 1-21, April.
    9. Prayag, Ankita Girish & Zhou, Yangxiao & Srinivasan, Veena & Stigter, Tibor & Verzijl, Andres, 2023. "Assessing the impact of groundwater abstractions on aquifer depletion in the Cauvery Delta, India," Agricultural Water Management, Elsevier, vol. 279(C).
    10. Chinnasamy, Pennan & Misra, Gourav & Shah, Tushaar & Maheshwari, Basant & Prathapar, Sanmugam, 2015. "Evaluating the effectiveness of water infrastructures for increasing groundwater recharge and agricultural production – A case study of Gujarat, India," Agricultural Water Management, Elsevier, vol. 158(C), pages 179-188.
    11. Ahmed Mohamed & Ezzat Ahmed & Fahad Alshehri & Ahmed Abdelrady, 2022. "The Groundwater Flow Behavior and the Recharge in the Nubian Sandstone Aquifer System during the Wet and Arid Periods," Sustainability, MDPI, vol. 14(11), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glendenning, C.J. & van Ogtrop, F.F. & Mishra, A.K. & Vervoort, R.W., 2012. "Balancing watershed and local scale impacts of rain water harvesting in India—A review," Agricultural Water Management, Elsevier, vol. 107(C), pages 1-13.
    2. Chinnasamy, Pennan & Maheshwari, Basant & Dillon, Peter & Purohit, Ramesh & Dashora, Yogita & Soni, Prahlad & Dashora, Ragini, 2018. "Estimation of specific yield using water table fluctuations and cropped area in a hardrock aquifer system of Rajasthan, India," Agricultural Water Management, Elsevier, vol. 202(C), pages 146-155.
    3. Jha, Madan K. & Chowdary, V.M. & Kulkarni, Y. & Mal, B.C., 2014. "Rainwater harvesting planning using geospatial techniques and multicriteria decision analysis," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 96-111.
    4. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    5. Rajat Agarwal & P. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    6. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    7. Prabir Mukherjee & Chander Singh & Saumitra Mukherjee, 2012. "Delineation of Groundwater Potential Zones in Arid Region of India—A Remote Sensing and GIS Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2643-2672, July.
    8. Scott Moore & Joshua Fisher, 2012. "Challenges and Opportunities in GRACE-Based Groundwater Storage Assessment and Management: An Example from Yemen," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1425-1453, April.
    9. Muhammad Salam & Muhammad Jehanzeb Masud Cheema & Wanchang Zhang & Saddam Hussain & Azeem Khan & Muhammad Bilal & Arfan Arshad & Sikandar Ali & Muhammad Awais Zaman, 2020. "Groundwater Storage Change Estimation Using Grace Satellite Data In Indus Basin," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(1), pages 10-15, February.
    10. Muhammad Salam & Muhammad Jehanzeb Masud Cheema & Wanchang Zhang & Saddam Hussain & Azeem Khan & Muhammad Bilal & Arfan Arshad & Sikandar Ali & Muhammad Awais Zaman, 2020. "Groundwater Storage Change Estimation Using Grace Satellite Data In Indus Basin," Big Data In Water Resources Engineering (BDWRE), Zibeline International Publishing, vol. 1(1), pages 13-18, February.
    11. Swades Pal & Susanta Mahato & Biplab Giri & Deep Narayan Pandey & Pawan Kumar Joshi, 2021. "Quantifying monthly water balance to estimate water deficit in Mayurakshi River basin of Eastern India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 15986-16014, November.
    12. Liu, Zhuo & Suter, Jordan F. & Messer, Kent D. & Duke, Joshua M. & Michael, Holly A., 2014. "Strategic entry and externalities in groundwater resources: Evidence from the lab," Resource and Energy Economics, Elsevier, vol. 38(C), pages 181-197.
    13. Siderius, Christian & Conway, Declan & Yassine, Mohamed & Murken, Lisa & Lostis, Pierre-Louis & Dalin, Carole, 2020. "Multi-scale analysis of the water-energy-food nexus in the Gulf region," LSE Research Online Documents on Economics 104091, London School of Economics and Political Science, LSE Library.
    14. Mahenthiran Sathiyamoorthy & Uma Shankar Masilamani & Aaron Anil Chadee & Sreelakhmi Devi Golla & Mohammed Aldagheiri & Parveen Sihag & Upaka Rathnayake & Jyotendra Patidar & Shivansh Shukla & Aryan K, 2023. "Sustainability of Groundwater Potential Zones in Coastal Areas of Cuddalore District, Tamil Nadu, South India Using Integrated Approach of Remote Sensing, GIS and AHP Techniques," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    15. Zhenzhen Zhao & Aiwen Lin & Jiandi Feng & Qian Yang & Ling Zou, 2016. "Analysis of Water Resources in Horqin Sandy Land Using Multisource Data from 2003 to 2010," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    16. Gulraiz Akhter & Yonggang Ge & Naveed Iqbal & Yanjun Shang & Muhammad Hasan, 2021. "Appraisal of Remote Sensing Technology for Groundwater Resource Management Perspective in Indus Basin," Sustainability, MDPI, vol. 13(17), pages 1-12, August.
    17. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    18. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    19. Alain Ayong Le Kama & Agnès Tomini, 2012. "Water Conservation versus Soil Salinity Control," Working Papers hal-04141151, HAL.
    20. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:7:p:2139-2152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.