IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i8p3179-3190.html
   My bibliography  Save this article

Groundwater Risk Assessment of the Third Aquifer in Tianjin City, China

Author

Listed:
  • Donglin Dong
  • Wenjie Sun
  • Zhaochang Zhu
  • Sha Xi
  • Gang Lin

Abstract

More than 70 % of Tianjin city’s water supply comes from groundwater. As water demand increases, this reliance on groundwater has caused serious geological problems, such as seawater intrusion. The third aquifer is the main water supply aquifer for Tianjin city. According to supply conditions, water abundance, exploitation conditions, and water quality of the third aquifer, the type of ecological environment system, protection targets and requirements, the present situation of groundwater exploitation and utilization, the groundwater exploitation demand, and utilization for regional water resources allocation as well as national overall scheme about reasonable exploitation, utilization and protection of groundwater resource, groundwater in Tianjin has been divided into seven function areas. After analysis of influencing factors, like water abundance, exploitation intensity and well density, risk factors have been classified using AHP and GIS. Then the comprehensive evaluation model of groundwater exploitation and utilization risks was built. Using this model, the exploitation and utilization risks of the third aquifer in years 2015, 2020, and 2030 have been forecasted. The results show that the risk grade of this aquifer in 2015 is higher than now, while lower in 2020 and 2030. But the risk grade of the 3rd and 4th aquifer increases, since the water yield of this aquifer must still meet a certain amount to support the basic demand of this city. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Donglin Dong & Wenjie Sun & Zhaochang Zhu & Sha Xi & Gang Lin, 2013. "Groundwater Risk Assessment of the Third Aquifer in Tianjin City, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3179-3190, June.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:3179-3190
    DOI: 10.1007/s11269-013-0342-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0342-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0342-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad Nikoo & Najmeh Mahjouri, 2013. "Water Quality Zoning Using Probabilistic Support Vector Machines and Self-Organizing Maps," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2577-2594, May.
    2. Xuemei Bai & Hidefumi Imura, 2001. "Towards sustainable urban water resource management: a case study in Tianjin, China," Sustainable Development, John Wiley & Sons, Ltd., vol. 9(1), pages 24-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Ou & Abudukeyimu Abulizi & Abudoukeremujiang Zayiti & Jiao Jiang & Adila Akbar & Tingting Yu, 2023. "Ecological Risk Zoning Control in Zhundong Economic Development Zone Based on Landscape Pattern Changes," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    2. Fawen Li & Yong Zhao & Ping Feng & Wei Zhang & Jiale Qiao, 2015. "Risk Assessment of Groundwater and its Application. Part I: Risk Grading Based on the Functional Zoning of Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2697-2714, June.
    3. Georgios K. Koulinas & Alexandros S. Xanthopoulos & Konstantinos A. Sidas & Dimitrios E. Koulouriotis, 2021. "Risks Ranking in a Desalination Plant Construction Project with a Hybrid AHP, Risk Matrix, and Simulation-Based Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3221-3233, August.
    4. M. Chitsazan & N. Aghazadeh & Y. Mirzaee & Y. Golestan, 2019. "Hydrochemical characteristics and the impact of anthropogenic activity on groundwater quality in suburban area of Urmia city, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 331-351, February.
    5. Fawen Li & Jiale Qiao & Yong Zhao & Wei Zhang, 2014. "Risk Assessment of Groundwater and its Application. Part II: Using a Groundwater Risk Maps to Determine Control Levels of the Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4875-4893, October.
    6. Mengdi Li & Yaoping Cui & Yaochen Qin & Zhifang Shi & Nan Li & Xiaoyan Liu & Yadi Run & Oliva Gabriel Chubwa, 2021. "Estimating the Impact of Ecological Migrants on the South-to-North Water Diversion in China," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
    7. Yanping Lan & Jianjun Chen & Yanping Yang & Ming Ling & Haotian You & Xiaowen Han, 2023. "Landscape Pattern and Ecological Risk Assessment in Guilin Based on Land Use Change," IJERPH, MDPI, vol. 20(3), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrdad Ghorbani Mooselu & Hamid Amiri & Sama Azadi & Helge Liltved, 2022. "Spatiotemporal assessment of surface water vulnerability to road construction," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7851-7873, June.
    2. Katherine Daniell & Jean-Daniel Rinaudo & Noel Wai Wah Chan & Céline Nauges & Quentin Grafton, 2015. "Understanding and Managing Urban Water in Transition," Post-Print hal-01290502, HAL.
    3. Jun-Yi Zhang & La-Chun Wang, 2015. "Assessment of water resource security in Chongqing City of China: What has been done and what remains to be done?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2751-2772, February.
    4. Yinan Zhang & Chunli Chu & Lei Liu & Shengguo Xu & Xiaoxue Ruan & Meiting Ju, 2017. "Water Environment Assessment as an Ecological Red Line Management Tool for Marine Wetland Protection," IJERPH, MDPI, vol. 14(8), pages 1-17, August.
    5. Farshid Rezaei & Rezvane Ghorbani & Najmeh Mahjouri, 2022. "Improving Daily and Monthly River Discharge Forecasts using Geostatistical Ensemble Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5063-5089, October.
    6. V. Gholami & M. R. Khaleghi & S. Pirasteh & Martijn J. Booij, 2022. "Comparison of Self-Organizing Map, Artificial Neural Network, and Co-Active Neuro-Fuzzy Inference System Methods in Simulating Groundwater Quality: Geospatial Artificial Intelligence," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 451-469, January.
    7. Katherine A. Daniell & Jean-Daniel Rinaudo & Noel Chan & Céline Nauges & Quentin Grafton, 2015. "Understanding and Managing Urban Water in Transition," Post-Print hal-01183846, HAL.
    8. Jordi Honey-Rosés, 2009. "Reviewing the arguments for market based approaches to water distribution: a critical assessment for sustainable water management in Spain," Sustainable Development, John Wiley & Sons, Ltd., vol. 17(6), pages 357-364.
    9. Xiao-meng Song & Fan-zhe Kong & Che-sheng Zhan, 2011. "Assessment of Water Resources Carrying Capacity in Tianjin City of China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 857-873, February.
    10. Chandrashekhar Bhuiyan & Prashant Kumar Champati Ray, 2017. "Groundwater Quality Zoning in the Perspective of Health Hazards," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 251-267, January.
    11. García Nieto, P.J. & García-Gonzalo, E. & Alonso Fernández, J.R. & Díaz Muñiz, C., 2019. "Water eutrophication assessment relied on various machine learning techniques: A case study in the Englishmen Lake (Northern Spain)," Ecological Modelling, Elsevier, vol. 404(C), pages 91-102.
    12. Ashantha Goonetilleke & Tan Yigitcanlar & Godwin A. Ayoko & Prasanna Egodawatta, 2014. "Sustainable Urban Water Environment," Books, Edward Elgar Publishing, number 14894.
    13. Margaret W. Gitau & Jingqiu Chen & Zhao Ma, 2016. "Water Quality Indices as Tools for Decision Making and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2591-2610, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:8:p:3179-3190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.