IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v147y2015icp67-81.html
   My bibliography  Save this article

Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model

Author

Listed:
  • Jiang, Yao
  • Xu, Xu
  • Huang, Quanzhong
  • Huo, Zailin
  • Huang, Guanhua

Abstract

Irrigation is essential for agriculture in the middle Heihe River basin, Northwest China, due to water scarcity and dryness of climate. The diverted river water for agriculture is being gradually reduced which requires an increased water use performance to meet crop water requirements and to maintain crop yields. It is therefore crucial to better know about the present agro-hydrological processes, irrigation performance and water productivity, and to further investigate the potential water saving on a regional scale. In this study, a distributed agro-hydrological model was developed by close coupling of an agro-hydrological model (SWAP-EPIC) and ArcInfo geographic information system. Combined effects of weather, crop, soil and irrigation factors were considered. The Yingke Irrigation District (YID), in the middle Heihe River basin, was chosen as case study, where experiments were conducted at both field and regional scales in 2012–2013. Parameters relative to soils and crops were first calibrated with field observed data and the model was later used in a distributed manner to simulate the agro-hydrological process of YID. Results showed that water productivity was spatially varied and quite small due to excessive irrigation water use. Crop evapotranspiration averaged 589mm and deep percolation was 125mm on average, which accounted for 21% of total irrigation. Analysis of the target scenario simulation indicated that the improvement of water conveyance and irrigation scheduling could lead to a 30% reduction of deep percolation, and save 15% of irrigation water without negative effects on crop yields.

Suggested Citation

  • Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2015. "Assessment of irrigation performance and water productivity in irrigated areas of the middle Heihe River basin using a distributed agro-hydrological model," Agricultural Water Management, Elsevier, vol. 147(C), pages 67-81.
  • Handle: RePEc:eee:agiwat:v:147:y:2015:i:c:p:67-81
    DOI: 10.1016/j.agwat.2014.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037837741400242X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahadi, Rasool & Samani, Zohrab & Skaggs, Rhonda, 2013. "Evaluating on-farm irrigation efficiency across the watershed: A case study of New Mexico's Lower Rio Grande Basin," Agricultural Water Management, Elsevier, vol. 124(C), pages 52-57.
    2. Fortes, P.S. & Platonov, A.E. & Pereira, L.S., 2005. "GISAREG--A GIS based irrigation scheduling simulation model to support improved water use," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 159-179, August.
    3. Tong, Ling & Kang, Shaozhong & Zhang, Lu, 2007. "Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China," Agricultural Water Management, Elsevier, vol. 87(3), pages 241-250, February.
    4. Xu, Xu & Huang, Guanhua & Qu, Zhongyi & Pereira, Luis S., 2010. "Assessing the groundwater dynamics and impacts of water saving in the Hetao Irrigation District, Yellow River basin," Agricultural Water Management, Elsevier, vol. 98(2), pages 301-313, December.
    5. Liu, Y. & Teixeira, J. L. & Zhang, H. J. & Pereira, L. S., 1998. "Model validation and crop coefficients for irrigation scheduling in the North China plain," Agricultural Water Management, Elsevier, vol. 36(3), pages 233-246, April.
    6. Xu, Xu & Huang, Guanhua & Sun, Chen & Pereira, Luis S. & Ramos, Tiago B. & Huang, Quanzhong & Hao, Yuanyuan, 2013. "Assessing the effects of water table depth on water use, soil salinity and wheat yield: Searching for a target depth for irrigated areas in the upper Yellow River basin," Agricultural Water Management, Elsevier, vol. 125(C), pages 46-60.
    7. Li, Yong & White, Robert & Chen, Deli & Zhang, Jiabao & Li, Baoguo & Zhang, Yuming & Huang, Yuanfang & Edis, Robert, 2007. "A spatially referenced water and nitrogen management model (WNMM) for (irrigated) intensive cropping systems in the North China Plain," Ecological Modelling, Elsevier, vol. 203(3), pages 395-423.
    8. Zhao, Wenzhi & Liu, Bing & Zhang, Zhihui, 2010. "Water requirements of maize in the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 97(2), pages 215-223, February.
    9. Pereira, Luis S. & Cordery, Ian & Iacovides, Iacovos, 2012. "Improved indicators of water use performance and productivity for sustainable water conservation and saving," Agricultural Water Management, Elsevier, vol. 108(C), pages 39-51.
    10. Droogers, P. & Bastiaanssen, W. G. M. & Beyazgul, M. & Kayam, Y. & Kite, G. W. & Murray-Rust, H., 2000. "Distributed agro-hydrological modeling of an irrigation system in western Turkey," Agricultural Water Management, Elsevier, vol. 43(2), pages 183-202, March.
    11. Noory, H. & van der Zee, S.E.A.T.M. & Liaghat, A.-M. & Parsinejad, M. & van Dam, J.C., 2011. "Distributed agro-hydrological modeling with SWAP to improve water and salt management of the Voshmgir Irrigation and Drainage Network in Northern Iran," Agricultural Water Management, Elsevier, vol. 98(6), pages 1062-1070, April.
    12. Ines, Amor V.M. & Honda, Kiyoshi & Das Gupta, Ashim & Droogers, Peter & Clemente, Roberto S., 2006. "Combining remote sensing-simulation modeling and genetic algorithm optimization to explore water management options in irrigated agriculture," Agricultural Water Management, Elsevier, vol. 83(3), pages 221-232, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xu & Jiang, Yao & Liu, Minghuan & Huang, Quanzhong & Huang, Guanhua, 2019. "Modeling and assessing agro-hydrological processes and irrigation water saving in the middle Heihe River basin," Agricultural Water Management, Elsevier, vol. 211(C), pages 152-164.
    2. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    3. Xue, Jing & Ren, Li, 2016. "Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 350-365.
    4. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    5. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    6. Miao, Qingfeng & Rosa, Ricardo D. & Shi, Haibin & Paredes, Paula & Zhu, Li & Dai, Jiaxin & Gonçalves, José M. & Pereira, Luis S., 2016. "Modeling water use, transpiration and soil evaporation of spring wheat–maize and spring wheat–sunflower relay intercropping using the dual crop coefficient approach," Agricultural Water Management, Elsevier, vol. 165(C), pages 211-229.
    7. Liu Liu & Zezhong Guo & Guanhua Huang & Ruotong Wang, 2019. "Water Productivity Evaluation under Multi-GCM Projections of Climate Change in Oases of the Heihe River Basin, Northwest China," IJERPH, MDPI, vol. 16(10), pages 1-17, May.
    8. Chen, Shilei & Huo, Zailin & Xu, Xu & Huang, Guanhua, 2019. "A conceptual agricultural water productivity model considering under field capacity soil water redistribution applicable for arid and semi-arid areas with deep groundwater," Agricultural Water Management, Elsevier, vol. 213(C), pages 309-323.
    9. Kumar, P. & Sarangi, A. & Singh, D.K. & Parihar, S.S. & Sahoo, R.N., 2015. "Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model," Agricultural Water Management, Elsevier, vol. 148(C), pages 72-83.
    10. Xiong, Lvyang & Xu, Xu & Engel, Bernard & Xiong, Yunwu & Huang, Quanzhong & Huang, Guanhua, 2021. "Predicting agroecosystem responses to identify appropriate water-saving management in arid irrigated regions with shallow groundwater: Realization on a regional scale," Agricultural Water Management, Elsevier, vol. 247(C).
    11. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    12. Liu, Yi & Zeng, Wenzhi & Ao, Chang & Lei, Guoqing & Wu, Jingwei & Huang, Jiesheng & Gaiser, Thomas & Srivastava, Amit Kumar, 2022. "Optimization of winter irrigation management for salinized farmland using a coupled model of soil water flow and crop growth," Agricultural Water Management, Elsevier, vol. 270(C).
    13. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    14. Liu, Meihan & Paredes, Paula & Shi, Haibin & Ramos, Tiago B. & Dou, Xu & Dai, Liping & Pereira, Luis S., 2022. "Impacts of a shallow saline water table on maize evapotranspiration and groundwater contribution using static water table lysimeters and the dual Kc water balance model SIMDualKc," Agricultural Water Management, Elsevier, vol. 273(C).
    15. Li, Pei & Ren, Li, 2023. "Evaluating the differences in irrigation methods for winter wheat under limited irrigation quotas in the water-food-economy nexus in the North China Plain," Agricultural Water Management, Elsevier, vol. 289(C).
    16. Wang, Xiangping & Huang, Guanhua & Yang, Jingsong & Huang, Quanzhong & Liu, Haijun & Yu, Lipeng, 2015. "An assessment of irrigation practices: Sprinkler irrigation of winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 159(C), pages 197-208.
    17. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    18. Wang, Qingming & Huo, Zailin & Zhang, Liudong & Wang, Jianhua & Zhao, Yong, 2016. "Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China," Agricultural Water Management, Elsevier, vol. 163(C), pages 125-138.
    19. Qi, Zhi & Gao, Ya & Sun, Chen & Ramos, Tiago B. & Mu, Danning & Xun, Yihao & Huang, Guanhua & Xu, Xu, 2024. "Assessing water-nitrogen use, crop growth and economic benefits for maize in upper Yellow River basin: Feasibility analysis for border and drip irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
    20. Mabhaudhi, Tafadzwanashe & Dirwai, Tinashe Lindel & Taguta, Cuthbert & Sikka, Alok & Lautze, Jonathan, 2023. "Mapping Decision Support Tools (DSTs) on agricultural water productivity: A global systematic scoping review," Agricultural Water Management, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:147:y:2015:i:c:p:67-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.