IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i14p4225-4239.html
   My bibliography  Save this article

Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling

Author

Listed:
  • Bijuan Huang
  • Longcang Shu
  • Y. Yang

Abstract

Hazard risk assessment of land subsidence is a complicated issue aiming at identifying areas with potentially high environmental hazard due to land subsidence. The methods of hazard risk assessment of land subsidence were reviewed and a new systematic approach was proposed in this study. Quantitative identification of land subsidence is important to the hazard risk assessment. Field observations using extensometers were used to determine assessment indexes and estimate weights of each index. Spatial modelling was also established in ArcGIS to better visualize the assessment data. These approaches then were applied to the Chengnan region, China as a case study. Three factors, thickness of the second confined aquifer, thickness of the soft clay and the annual recovery rate of groundwater level were incorporated into the hazard risk assessment index system. The weights of each index are 0.33, 0.17 and 0.5 respectively. The zonation map shows that the high, medium and low risk ranked areas for land subsidence account for 9.5 %, 44.7 % and 45.8 % of the total area respectively. The annual recovery rate of groundwater level is the major factor raising land subsidence hazard risk in approximately half of the study area. Copyright The Author(s) 2012

Suggested Citation

  • Bijuan Huang & Longcang Shu & Y. Yang, 2012. "Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4225-4239, November.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:14:p:4225-4239
    DOI: 10.1007/s11269-012-0141-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0141-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0141-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen-Wuing Liu & Yen-Lu Chou & Shien-Tsung Lin & Gin-Jie Lin & Cheng-Shin Jang, 2010. "Management of High Groundwater Level Aquifer in the Taipei Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3513-3525, October.
    2. Chia-Sheng Hsieh & Tian-Yuan Shih & Jyr-Ching Hu & Hsin Tung & Mong-Han Huang & Jacques Angelier, 2011. "Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1311-1332, September.
    3. Cheinway Hwang & Wei-Chia Hung & Chih-Hsi Liu, 2008. "Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(1), pages 1-16, October.
    4. José Molina & José García Aróstegui & José Benavente & Consuelo Varela & Africa Hera & Juan López Geta, 2009. "Aquifers Overexploitation in SE Spain: A Proposal for the Integrated Analysis of Water Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2737-2760, October.
    5. Tao-Chang Yang & Pao-Shan Yu, 2006. "Application of Fuzzy Multi-Objective Function on Reducing Groundwater Demand for Aquaculture in Land-Subsidence Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(3), pages 377-390, June.
    6. Hasanuddin Abidin & Rochman Djaja & Dudy Darmawan & Samsul Hadi & Arifin Akbar & H. Rajiyowiryono & Y. Sudibyo & I. Meilano & M. Kasuma & J. Kahar & Cecep Subarya, 2001. "Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 365-387, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rejane Maria Rodrigues Luna & Silvio Jacks dos Anjos Garnés & Jaime Joaquim da Silva Pereira Cabral & Sylvana Melo Santos, 2017. "Groundwater overexploitation and soil subsidence monitoring on Recife plain (Brazil)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1363-1376, April.
    2. Rejane Maria Rodrigues Luna & Silvio Jacks Garnés & Jaime Joaquim Cabral & Sylvana Melo Santos, 2021. "Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1821-1837, April.
    3. Claudio Alimonti & Mara Lombardi & Monica Cardarilli & Elena Soldo, 2017. "Reliability Analysis Applied on Land Subsidence Effects of Groundwater Remediation: Probabilistic vs. Deterministic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1745-1758, April.
    4. Jonas Sundell & Ezra Haaf & Tommy Norberg & Claes Alén & Mats Karlsson & Lars Rosén, 2019. "Risk Mapping of Groundwater‐Drawdown‐Induced Land Subsidence in Heterogeneous Soils on Large Areas," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 105-124, January.
    5. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
    6. Yu Chen & Longcang Shu & Thomas J. Burbey, 2014. "An Integrated Risk Assessment Model of Township‐Scaled Land Subsidence Based on an Evidential Reasoning Algorithm and Fuzzy Set Theory," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 656-669, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huafeng Xu & Bin Liu & Zhigeng Fang, 2014. "New grey prediction model and its application in forecasting land subsidence in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1181-1194, March.
    2. Dayang Xuan & Jialin Xu, 2014. "Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 883-906, September.
    3. Hasanuddin Abidin & Heri Andreas & Irwan Gumilar & Yoichi Fukuda & Yusuf Pohan & T. Deguchi, 2011. "Land subsidence of Jakarta (Indonesia) and its relation with urban development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1753-1771, December.
    4. P. Ward & M. Marfai & F. Yulianto & D. Hizbaron & J. Aerts, 2011. "Coastal inundation and damage exposure estimation: a case study for Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 899-916, March.
    5. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    6. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    7. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    8. Teresa Torregrosa & Martín Sevilla & Borja Montaño & Victoria López-Vico, 2010. "The Integrated Management of Water Resources in Marina Baja (Alicante, Spain). A Simultaneous Equation Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 3799-3815, November.
    9. Zhongyuan Gu & Miaocong Cao & Chunguang Wang & Na Yu & Hongyu Qing, 2022. "Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    10. Chang, Hung-Hao & Boisvert, Richard N. & Hung, Ling-Yi, 2010. "Land subsidence, production efficiency, and the decision of aquacultural firms in Taiwan to discontinue production," Ecological Economics, Elsevier, vol. 69(12), pages 2448-2456, October.
    11. Wei Yang & Zhifeng Yang, 2010. "An Interactive Fuzzy Satisfying Approach for Sustainable Water Management in the Yellow River Delta, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1273-1284, May.
    12. Hone-Jay Chu, 2018. "Drought Detection of Regional Nonparametric Standardized Groundwater Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3119-3134, July.
    13. Beibei Chen & Huili Gong & Xiaojuan Li & Kunchao Lei & Yinghai Ke & Guangyao Duan & Chaofan Zhou, 2015. "Spatial correlation between land subsidence and urbanization in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2637-2652, February.
    14. David Martínez-Granados & José Maestre-Valero & Javier Calatrava & Victoriano Martínez-Alvarez, 2011. "The Economic Impact of Water Evaporation Losses from Water Reservoirs in the Segura Basin, SE Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3153-3175, October.
    15. Victoria Junquera & Daniel I. Rubenstein & Simon A. Levin & Jos'e I. Hormaza & I~naki Vadillo P'erez & Pablo Jim'enez Gavil'an, 2024. "Hydrological collapse in southern Spain under expanding irrigated agriculture: Meteorological, hydrological, and structural drought," Papers 2408.00683, arXiv.org.
    16. Rejane Maria Rodrigues Luna & Silvio Jacks Garnés & Jaime Joaquim Cabral & Sylvana Melo Santos, 2021. "Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1821-1837, April.
    17. Rupérez-Moreno, Carmen & Senent-Aparicio, Javier & Martinez-Vicente, David & García-Aróstegui, José Luis & Calvo-Rubio, Francisco Cabezas & Pérez-Sánchez, Julio, 2017. "Sustainability of irrigated agriculture with overexploited aquifers: The case of Segura basin (SE, Spain)," Agricultural Water Management, Elsevier, vol. 182(C), pages 67-76.
    18. Frank Ward & Manuel Pulido-Velazquez, 2012. "Economic Costs of Sustaining Water Supplies: Findings from the Rio Grande," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2883-2909, August.
    19. Richard Peralta & Bassel Timani & Rudolf Das, 2011. "Optimizing Safe Yield Policy Implementation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 483-508, January.
    20. José A. Aznar-Sánchez & Luis J. Belmonte-Ureña & Juan F. Velasco-Muñoz & Diego L. Valera, 2019. "Aquifer Sustainability and the Use of Desalinated Seawater for Greenhouse Irrigation in the Campo de Níjar, Southeast Spain," IJERPH, MDPI, vol. 16(5), pages 1-16, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:14:p:4225-4239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.