IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i6d10.1007_s11269-017-1596-7.html
   My bibliography  Save this article

Reliability Analysis Applied on Land Subsidence Effects of Groundwater Remediation: Probabilistic vs. Deterministic Approach

Author

Listed:
  • Claudio Alimonti

    (University of Rome La Sapienza)

  • Mara Lombardi

    (University of Rome La Sapienza)

  • Monica Cardarilli

    (University of Rome La Sapienza)

  • Elena Soldo

    (University of Rome La Sapienza)

Abstract

The quantification of soil variability is one of the most important aspects in the geo-engineering context. The uncertainty analysis is the main part of the reliability assessment for which a quantitative evaluation was performed in this study. The Reliability Index and the Probability of Failure using the First-Order Reliability Method (FORM) represents both, an effective method which is easy to implement at the same time. This work analyzes possible effects of compaction induced into the aquifer of the Scarlino Plain, caused by the extension of the hydraulic barrier for groundwater remediation. The currently implemented vertical barrier is composed of 12 wells which reach the depth of 10 m. The improvement of the project involves the construction of a further 40 clusters, each consisting of a doublet which intercepts different depths (10 and 18 m). The models of the subsoil stratigraphy and of the groundwater were built using a numerical model. The groundwater flow and the piezometric surface in the current configuration of the barrier were studied and the project configuration was evaluated. Using the Aquitard drainage model, the land subsidence was estimated to calculate the maximum admissible displacement related to exhibited goods, the so called territorial vulnerability. The evaluation analysis was performed using a traditional deterministic approach, followed by a reliability method based on probabilistic models. Finally, the respective results were reported in a soil mapping with overlapping layers.

Suggested Citation

  • Claudio Alimonti & Mara Lombardi & Monica Cardarilli & Elena Soldo, 2017. "Reliability Analysis Applied on Land Subsidence Effects of Groundwater Remediation: Probabilistic vs. Deterministic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1745-1758, April.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1596-7
    DOI: 10.1007/s11269-017-1596-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1596-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1596-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claudio Alimonti & Mara Lombardi, 2015. "Reliability Analysis for Preliminary Forecasts of Hydrogeological Unit Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3771-3785, August.
    2. Aristotelis Mantoglou & George Kourakos, 2007. "Optimal Groundwater Remediation Under Uncertainty Using Multi-objective Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 835-847, May.
    3. Bijuan Huang & Longcang Shu & Y. Yang, 2012. "Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4225-4239, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyi Liu & Jonghyun Lee & Peter Kitanidis & Jack Parker & Ungtae Kim, 2012. "Value of Information as a Context-Specific Measure of Uncertainty in Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1513-1535, April.
    2. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
    3. Zeinab Takbiri & Abbas Afshar, 2012. "Multi-Objective Optimization of Fusegates System under Hydrologic Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2323-2345, June.
    4. Hamid Kardan Moghaddam & Mohammad Ebrahim Banihabib & Saman Javadi & Timothy O. Randhir, 2021. "A framework for the assessment of qualitative and quantitative sustainable development of groundwater system," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(6), pages 1096-1110, November.
    5. Li He & Feng Shao & Lixia Ren, 2021. "Sustainability appraisal of desired contaminated groundwater remediation strategies: an information-entropy-based stochastic multi-criteria preference model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1759-1779, February.
    6. P. Sidiropoulos & N. Mylopoulos & A. Loukas, 2015. "Stochastic Simulation and Management of an Over-Exploited Aquifer Using an Integrated Modeling System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(3), pages 929-943, February.
    7. Bungon Kumphon, 2013. "Genetic Algorithms for Multi-objective Optimization: Application to a Multi-reservoir System in the Chi River Basin, Thailand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4369-4378, September.
    8. Rejane Maria Rodrigues Luna & Silvio Jacks dos Anjos Garnés & Jaime Joaquim da Silva Pereira Cabral & Sylvana Melo Santos, 2017. "Groundwater overexploitation and soil subsidence monitoring on Recife plain (Brazil)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1363-1376, April.
    9. L. Raso & S. V. Weijs & M. Werner, 2018. "Balancing Costs and Benefits in Selecting New Information: Efficient Monitoring Using Deterministic Hydro-economic Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 339-357, January.
    10. Claudio Alimonti & Mara Lombardi, 2015. "Reliability Analysis for Preliminary Forecasts of Hydrogeological Unit Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3771-3785, August.
    11. Gift Dumedah, 2012. "Formulation of the Evolutionary-Based Data Assimilation, and its Implementation in Hydrological Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3853-3870, October.
    12. Domenico Baú, 2012. "Planning of Groundwater Supply Systems Subject to Uncertainty Using Stochastic Flow Reduced Models and Multi-Objective Evolutionary Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2513-2536, July.
    13. Rejane Maria Rodrigues Luna & Silvio Jacks Garnés & Jaime Joaquim Cabral & Sylvana Melo Santos, 2021. "Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1821-1837, April.
    14. Jonas Sundell & Ezra Haaf & Tommy Norberg & Claes Alén & Mats Karlsson & Lars Rosén, 2019. "Risk Mapping of Groundwater‐Drawdown‐Induced Land Subsidence in Heterogeneous Soils on Large Areas," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 105-124, January.
    15. Hossein Rezaei & Omid Bozorg-Haddad & Hugo A. Loáiciga, 2020. "Reliability-Based Multi-Objective Optimization of Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3079-3097, August.
    16. Yu Chen & Longcang Shu & Thomas J. Burbey, 2014. "An Integrated Risk Assessment Model of Township‐Scaled Land Subsidence Based on an Evidential Reasoning Algorithm and Fuzzy Set Theory," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 656-669, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1596-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.