IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v115y2023i3d10.1007_s11069-022-05624-0.html
   My bibliography  Save this article

Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)

Author

Listed:
  • Shabnam Mehrnoor

    (Islamic Azad University)

  • Maryam Robati

    (Islamic Azad University)

  • Mir Masoud Kheirkhah Zarkesh

    (Islamic Azad University)

  • Forough Farsad

    (Islamic Azad University)

  • Shahram Baikpour

    (Islamic Azad University)

Abstract

Land subsidence is a morphological phenomenon, which causes negative environmental and economic consequences for human societies. Therefore, identifying the areas prone to subsidence can be one of the necessary measures for reducing the potential risks. This study aims to evaluate the efficiency of the support vector machine (SVM) algorithm and weighted overlay index (WOI) models in zoning the rate of land subsidence hazard in Hashtgerd plain, Iran. First, the 19 criteria include groundwater depletion, groundwater extraction, aquifer thickness, alluvium thickness, aquifer recharge, well density, drainage density, groundwater depth, lithology, bedrock depth, average annual precipitation, average annual temperature, climate type, agricultural use, urban use, industrial use, distance from rivers and streams, distance from roads, distance from faults were considered. Then, the layers were weighed based on the Best–Worst Method (BWM). The results of BWM indicated that the factors of groundwater extraction (0.219), lithology (0.157), and groundwater depletion (0.079) have a greater effect on the potential for subsidence hazard. Moreover, the results of validation by performing ROC curve showed that the accuracy of RBF-SVM, LN-SVM, SIG-SVM, PL-SVM, and WOI were 95.7, 94.3, 94.9, 93.2, and 90%, respectively. Based on the ROC results, all of the models for preparing the subsidence hazard map in Hashtgerd plain exhibit excellent accuracy. Therefore, all of the models used here can predict the areas vulnerable to subsidence properly. In this study, the five land subsidence hazard maps were used as new input factors and integrated using fuzzy gamma-ensemble methods to make better hazard maps. The results of the ensemble model indicated that 19.3% of Hashtgerd plain is in the zone of high to very high sensitivity. The results of this study can help planners in managing and reducing the possible hazards of subsidence.

Suggested Citation

  • Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
  • Handle: RePEc:spr:nathaz:v:115:y:2023:i:3:d:10.1007_s11069-022-05624-0
    DOI: 10.1007/s11069-022-05624-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05624-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05624-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajat Agarwal & P. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    2. Biswajeet Pradhan & Mohammed Abokharima & Mustafa Jebur & Mahyat Tehrany, 2014. "Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 1019-1042, September.
    3. Lei Nie & Min Zhang & Heqing Jian, 2013. "Analysis of surface subsidence mechanism and regularity under the influence of seism and fault," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 773-780, March.
    4. Yang Yu & Shen-En Chen & Ka-Zhong Deng & Peng Wang & Hong-Dong Fan, 2018. "Subsidence Mechanism and Stability Assessment Methods for Partial Extraction Mines for Sustainable Development of Mining Cities—A Review," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    5. Bijuan Huang & Longcang Shu & Y. Yang, 2012. "Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4225-4239, November.
    6. M. Sayyaf & M. Mahdavi & O. Barani & S. Feiznia & B. Motamedvaziri, 2014. "Simulation of land subsidence using finite element method: Rafsanjan plain case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 309-322, June.
    7. Massimo Conforti & Francesco Muto & Valeria Rago & Salvatore Critelli, 2014. "Landslide inventory map of north-eastern Calabria (South Italy)," Journal of Maps, Taylor & Francis Journals, vol. 10(1), pages 90-102, January.
    8. Rajat Agarwal & P. K. Garg, 2016. "Remote Sensing and GIS Based Groundwater Potential & Recharge Zones Mapping Using Multi-Criteria Decision Making Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 243-260, January.
    9. Dieu Tien Bui & Biswajeet Pradhan & Owe Lofman & Inge Revhaug, 2012. "Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and Naïve Bayes Models," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-26, July.
    10. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    11. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    12. Iwan Rudiarto & Wiwandari Handayani & Jawoto Sih Setyono, 2018. "A Regional Perspective on Urbanization and Climate-Related Disasters in the Northern Coastal Region of Central Java, Indonesia," Land, MDPI, vol. 7(1), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    2. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    3. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    4. Ravindra Singh Saluja & Varinder Singh, 2023. "Attribute-based characterization, coding, and selection of joining processes using a novel MADM approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 616-655, June.
    5. Junli Zhang & Guoteng Wang & Zheng Xu & Zheren Zhang, 2022. "A Comprehensive Evaluation Method and Strengthening Measures for AC/DC Hybrid Power Grids," Energies, MDPI, vol. 15(12), pages 1-20, June.
    6. Hamzeh Soltanali & Mehdi Khojastehpour & Siamak Kheybari, 2023. "Evaluating the critical success factors for maintenance management in agro-industries using multi-criteria decision-making techniques," Operations Management Research, Springer, vol. 16(2), pages 949-968, June.
    7. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    8. Vieira, Fabiana C. & Ferreira, Fernando A.F. & Govindan, Kannan & Ferreira, Neuza C.M.Q.F. & Banaitis, Audrius, 2022. "Measuring urban digitalization using cognitive mapping and the best worst method (BWM)," Technology in Society, Elsevier, vol. 71(C).
    9. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Negin Salimi & Jafar Rezaei, 2016. "Measuring efficiency of university-industry Ph.D. projects using best worst method," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1911-1938, December.
    11. Chun-Chieh Tseng & Jun-Yi Zeng & Min-Liang Hsieh & Chih-Hung Hsu, 2022. "Analysis of Innovation Drivers of New and Old Kinetic Energy Conversion Using a Hybrid Multiple-Criteria Decision-Making Model in the Post-COVID-19 Era: A Chinese Case," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    12. Tavana, Madjid & Khalili Nasr, Arash & Mina, Hassan & Michnik, Jerzy, 2022. "A private sustainable partner selection model for green public-private partnerships and regional economic development," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    13. Jairo Ortega & Sarbast Moslem & János Tóth & Tamás Péter & Juan Palaguachi & Mario Paguay, 2020. "Using Best Worst Method for Sustainable Park and Ride Facility Location," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    14. Vineet Kaushik & Ashwani Kumar & Himanshu Gupta & Gaurav Dixit, 2022. "Modelling and prioritizing the factors for online apparel return using BWM approach," Electronic Commerce Research, Springer, vol. 22(3), pages 843-873, September.
    15. Amelia Bilbao-Terol & Mar Arenas-Parra & Raquel Quiroga-García & Celia Bilbao-Terol, 2022. "An extended best–worst multiple reference point method: application in the assessment of non-life insurance companies," Operational Research, Springer, vol. 22(5), pages 5323-5362, November.
    16. Sarbast Moslem & Muhammet Gul & Danish Farooq & Erkan Celik & Omid Ghorbanzadeh & Thomas Blaschke, 2020. "An Integrated Approach of Best-Worst Method (BWM) and Triangular Fuzzy Sets for Evaluating Driver Behavior Factors Related to Road Safety," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    17. Sahar Moazzeni & Sobhan Mostafayi Darmian & Lars Magnus Hvattum, 2023. "Multiple criteria decision making and robust optimization to design a development plan for small and medium-sized enterprises in the east of Iran," Operational Research, Springer, vol. 23(1), pages 1-32, March.
    18. Xueliang Li & Bingkang Li & Long Zhao & Huiru Zhao & Wanlei Xue & Sen Guo, 2019. "Forecasting the Short-Term Electric Load Considering the Influence of Air Pollution Prevention and Control Policy via a Hybrid Model," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
    19. Weiliang Zhang & Sifeng Liu & Junliang Du & Liangyan Tao & Wenjie Dong & Muhammad Nawaz, 2024. "The evaluation of pension institution service quality in China: a novel method based on BWM and Grey-TOPSIS," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1562-1581, September.
    20. Kusi-Sarpong, Simonov & Orji, Ifeyinwa Juliet & Gupta, Himanshu & Kunc, Martin, 2021. "Risks associated with the implementation of big data analytics in sustainable supply chains," Omega, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:115:y:2023:i:3:d:10.1007_s11069-022-05624-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.