IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v73y2014i2p883-906.html
   My bibliography  Save this article

Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China

Author

Listed:
  • Dayang Xuan
  • Jialin Xu

Abstract

Surface subsidence can cause many environmental problems and hazards (including loss of land area and damage to buildings), and such hazards are particularly serious in coal mining districts. Injecting grout into the bed separation in the overburden has been proposed as an effective control measure against surface subsidence during longwall mining. However, no field trials of this technique have been implemented in mines under villages in China, and thus, its ability to control subsidence in such areas has yet to be demonstrated. In this study, field trials using this technique were carried out during longwall mining under villages in the Liudian coal mine, China. The maximum surface subsidence observed after the extraction was only 0.298 m, which accounts for 10 % of the mining height and is 79 % less than the predicted subsidence. Moreover, no damage occurred to the village buildings either during or after extraction and these buildings remain stable. Thus, this study represents the first successful attempt to control surface subsidence under villages in China using grout injection during longwall mining. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Dayang Xuan & Jialin Xu, 2014. "Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 883-906, September.
  • Handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:883-906
    DOI: 10.1007/s11069-014-1113-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1113-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1113-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye-Shuang Xu & Shui-Long Shen & Zheng-Yin Cai & Guo-Yun Zhou, 2008. "The state of land subsidence and prediction approaches due to groundwater withdrawal in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 45(1), pages 123-135, April.
    2. Huafeng Xu & Bin Liu & Zhigeng Fang, 2014. "New grey prediction model and its application in forecasting land subsidence in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1181-1194, March.
    3. Lei Nie & Min Zhang & Heqing Jian, 2013. "Analysis of surface subsidence mechanism and regularity under the influence of seism and fault," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 773-780, March.
    4. Eray Can & Çetin Mekik & Şenol Kuşcu & Hakan Akçın, 2013. "Monitoring deformations on engineering structures in Kozlu Hard Coal Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2311-2330, February.
    5. Chia-Sheng Hsieh & Tian-Yuan Shih & Jyr-Ching Hu & Hsin Tung & Mong-Han Huang & Jacques Angelier, 2011. "Using differential SAR interferometry to map land subsidence: a case study in the Pingtung Plain of SW Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1311-1332, September.
    6. P. Julio-Miranda & A. Ortíz-Rodríguez & A. Palacio-Aponte & R. López-Doncel & R. Barboza-Gudiño, 2012. "Damage assessment associated with land subsidence in the San Luis Potosi-Soledad de Graciano Sanchez metropolitan area, Mexico, elements for risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 751-765, October.
    7. Trčková Jiřina & Šperl Jan, 2010. "Reduction of surface subsidence risk by fly ash exploitation as filling material in deep mining areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(2), pages 251-258, May.
    8. Hasanuddin Abidin & Rochman Djaja & Dudy Darmawan & Samsul Hadi & Arifin Akbar & H. Rajiyowiryono & Y. Sudibyo & I. Meilano & M. Kasuma & J. Kahar & Cecep Subarya, 2001. "Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 365-387, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenqi Huo & Huaizhan Li & Guangli Guo & Yuezong Wang & Yafei Yuan, 2023. "Surface Subsidence Prediction Method for Backfill Mining in Shallow Coal Seams with Hard Roofs for Building Protection," Sustainability, MDPI, vol. 15(22), pages 1-18, November.
    2. Xiaowei Feng & Nong Zhang & Lianyuan Gong & Fei Xue & Xigui Zheng, 2015. "Application of a Backfilling Method in Coal Mining to Realise an Ecologically Sensitive “Black Gold” Industry," Energies, MDPI, vol. 8(5), pages 1-12, April.
    3. Wenhao Cao & Xufeng Wang & Peng Li & Dongsheng Zhang & Chundong Sun & Dongdong Qin, 2018. "Wide Strip Backfill Mining for Surface Subsidence Control and Its Application in Critical Mining Conditions of a Coal Mine," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    4. Weibing Zhu & Shengchao Yu & Jingmin Xu, 2018. "Influence of the Elastic Dilatation of Mining-Induced Unloading Rock Mass on the Development of Bed Separation," Energies, MDPI, vol. 11(4), pages 1-16, March.
    5. Junwen Cao & Ting Liu & Yu Shi & Baiquan Lin & Jiahao Shen & Youping Xu & Xiangming Gong & Yanchi Liu, 2023. "Strata Movement of Overburden-Separation Grouting Working Face and Its Influence on Gas Emission during Mining," Sustainability, MDPI, vol. 15(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huafeng Xu & Bin Liu & Zhigeng Fang, 2014. "New grey prediction model and its application in forecasting land subsidence in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1181-1194, March.
    2. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    3. Lei Nie & Hongfei Wang & Yan Xu & Zechuang Li, 2015. "A new prediction model for mining subsidence deformation: the arc tangent function model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2185-2198, February.
    4. Bijuan Huang & Longcang Shu & Y. Yang, 2012. "Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4225-4239, November.
    5. Richa Bhattarai & Haireti Alifu & Aikebaier Maitiniyazi & Akihiko Kondoh, 2017. "Detection of Land Subsidence in Kathmandu Valley, Nepal, Using DInSAR Technique," Land, MDPI, vol. 6(2), pages 1-17, June.
    6. Jianxiu Wang & Xueying Gu & Yukun Jiang & Tianrong Huang & Bo Feng, 2013. "Point-line-area-volume index system of land subsidence and application in Ningbo, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2197-2214, December.
    7. Hasanuddin Abidin & Heri Andreas & Irwan Gumilar & Yoichi Fukuda & Yusuf Pohan & T. Deguchi, 2011. "Land subsidence of Jakarta (Indonesia) and its relation with urban development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1753-1771, December.
    8. P. Ward & M. Marfai & F. Yulianto & D. Hizbaron & J. Aerts, 2011. "Coastal inundation and damage exposure estimation: a case study for Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 899-916, March.
    9. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    10. Ya-Qiong Wang & Shao-Bing Zhang & Long-Long Chen & Yong-Li Xie & Zhi-Feng Wang, 2019. "Field monitoring on deformation of high rock slope during highway construction: A case study in Wenzhou, China," International Journal of Distributed Sensor Networks, , vol. 15(12), pages 15501477198, December.
    11. Biswajeet Pradhan & Mohammed Abokharima & Mustafa Jebur & Mahyat Tehrany, 2014. "Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 1019-1042, September.
    12. Zhongyuan Gu & Miaocong Cao & Chunguang Wang & Na Yu & Hongyu Qing, 2022. "Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    13. Guodong Li & Hongzhi Wang & Zhaoxuan Liu & Honglin Liu & Haitian Yan & Zenwei Liu, 2022. "Effects of Aeolian Sand and Water−Cement Ratio on Performance of a Novel Mine Backfill Material," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    14. Ye-Shuang Xu & Yao Yuan & Shui-Long Shen & Zhen-Yu Yin & Huai-Na Wu & Lei Ma, 2015. "Investigation into subsidence hazards due to groundwater pumping from Aquifer II in Changzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 281-296, August.
    15. Yong-Xia Wu & Tian-Liang Yang & Pei-Chao Li & Jin-Xin Lin, 2019. "Investigation of Groundwater Withdrawal and Recharge Affecting Underground Structures in the Shanghai Urban Area," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    16. Ahmed M. Youssef & Mazen M. Abu Abdullah & Biswajeet Pradhan & Ahmed F. D. Gaber, 2019. "Agriculture Sprawl Assessment Using Multi-Temporal Remote Sensing Images and Its Environmental Impact; Al-Jouf, KSA," Sustainability, MDPI, vol. 11(15), pages 1-16, August.
    17. Hone-Jay Chu, 2018. "Drought Detection of Regional Nonparametric Standardized Groundwater Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3119-3134, July.
    18. Jingjie Liu & Min Xia, 2023. "Influencing Factors Analysis and Optimization of Land Use Allocation: Combining MAS with MOPSO Procedure," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    19. Zhili Zuo & Jinhua Cheng & Haixiang Guo & Yonglin Li, 2021. "Comparative Study on Relative Fossil Energy Carrying Capacity in China and the United States," Energies, MDPI, vol. 14(10), pages 1-15, May.
    20. Beibei Chen & Huili Gong & Xiaojuan Li & Kunchao Lei & Yinghai Ke & Guangyao Duan & Chaofan Zhou, 2015. "Spatial correlation between land subsidence and urbanization in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2637-2652, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:883-906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.