IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v86y2017i3d10.1007_s11069-017-2749-y.html
   My bibliography  Save this article

Groundwater overexploitation and soil subsidence monitoring on Recife plain (Brazil)

Author

Listed:
  • Rejane Maria Rodrigues Luna

    (Postgraduate Course in Civil Engineering, Federal University of Pernambuco)

  • Silvio Jacks dos Anjos Garnés

    (Department of Cartographic Engineering, Federal University of Pernambuco)

  • Jaime Joaquim da Silva Pereira Cabral

    (Postgraduate Course in Civil Engineering, Federal University of Pernambuco)

  • Sylvana Melo Santos

    (Department of Civil and Environmental Engineering, Federal University of Pernambuco)

Abstract

The city of Recife, in the northeast of Brazil, is formed by a coastal plain, which is surrounded by several hills, the Atlantic ocean and a number of rivers that cross the city. The plain was formed by fluviomarine sediment, which was produced by marine transgressions and regressions. Its hydrogeological characteristics and geographical position, located slightly above sea level, lead to water-related problems, such as coastal erosion and frequent flooding. In the last 50 years, an increase in the exploitation of groundwater has caused a lowering of the piezometric surface (up to 100 m at certain points). In porous sedimentary aquifers, pumping fluid decreases pore pressure and reduces the support provided by the overlying layers of soil. This reduction in pressure is caused by the lowering of the piezometric surface and leads to soil deformation, usually called subsidence. As a result of the excessive exploitation of groundwater in Recife, and the consequent decrease in groundwater levels, soil subsidence has become a great concern and requires careful investigation. Geodesic methods of monitoring and quantifying the vertical deformation of soil, caused by the removal of groundwater, have been used around the world. The present study describes a method of assessing the occurrence of soil subsidence in an area where excessive exploitation of groundwater has taken place. High-precision geometric leveling was used to quantify the phenomenon and to perform comparative analysis of altitude values from the year 1958 with more recent altitude values (from 2012 and 2015). The experiments confirmed a difference of 3.86 cm for one of the reference levels, located within the subsidence monitoring area. Thus, the leveling analysis provided estimates of a vertical displacement of approximately 0.68 mm/year in this area.

Suggested Citation

  • Rejane Maria Rodrigues Luna & Silvio Jacks dos Anjos Garnés & Jaime Joaquim da Silva Pereira Cabral & Sylvana Melo Santos, 2017. "Groundwater overexploitation and soil subsidence monitoring on Recife plain (Brazil)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1363-1376, April.
  • Handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-017-2749-y
    DOI: 10.1007/s11069-017-2749-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-017-2749-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-017-2749-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ye-Shuang Xu & Lei Ma & Yan-Jun Du & Shui-Long Shen, 2012. "Analysis of urbanisation-induced land subsidence in Shanghai," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 1255-1267, September.
    2. Sylvana Santos & Jaime Cabral & Ivaldo Pontes Filho, 2012. "Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 421-439, October.
    3. Bijuan Huang & Longcang Shu & Y. Yang, 2012. "Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4225-4239, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rejane Maria Rodrigues Luna & Silvio Jacks Garnés & Jaime Joaquim Cabral & Sylvana Melo Santos, 2021. "Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1821-1837, April.
    2. Majid Mohammady & Hamid Reza Pourghasemi & Mojtaba Amiri, 2019. "Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 951-971, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rejane Maria Rodrigues Luna & Silvio Jacks Garnés & Jaime Joaquim Cabral & Sylvana Melo Santos, 2021. "Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1821-1837, April.
    2. Xi-Cun He & Tian-Liang Yang & Shui-Long Shen & Ye-Shuang Xu & Arul Arulrajah, 2019. "Land Subsidence Control Zone and Policy for the Environmental Protection of Shanghai," IJERPH, MDPI, vol. 16(15), pages 1-13, July.
    3. Yong-Xia Wu & Tian-Liang Yang & Pei-Chao Li & Jin-Xin Lin, 2019. "Investigation of Groundwater Withdrawal and Recharge Affecting Underground Structures in the Shanghai Urban Area," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    4. Claudio Alimonti & Mara Lombardi & Monica Cardarilli & Elena Soldo, 2017. "Reliability Analysis Applied on Land Subsidence Effects of Groundwater Remediation: Probabilistic vs. Deterministic Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 1745-1758, April.
    5. Ze-Nian Wang & Jun Chen & Wen-Chieh Cheng & Arul Arulrajah & Suksun Horpibulsuk, 2018. "Investigation into the tempo-spatial distribution of recent fire hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1889-1907, July.
    6. Jonas Sundell & Ezra Haaf & Tommy Norberg & Claes Alén & Mats Karlsson & Lars Rosén, 2019. "Risk Mapping of Groundwater‐Drawdown‐Induced Land Subsidence in Heterogeneous Soils on Large Areas," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 105-124, January.
    7. Daniela Ducci & Mariangela Sellerino, 2015. "Groundwater Mass Balance in Urbanized Areas Estimated by a Groundwater Flow Model Based on a 3D Hydrostratigraphical Model: the Case Study of the Eastern Plain of Naples (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4319-4333, September.
    8. Yu Chen & Longcang Shu & Thomas J. Burbey, 2014. "An Integrated Risk Assessment Model of Township‐Scaled Land Subsidence Based on an Evidential Reasoning Algorithm and Fuzzy Set Theory," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 656-669, April.
    9. Majid Mohammady & Hamid Reza Pourghasemi & Mojtaba Amiri, 2019. "Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 951-971, November.
    10. Shabnam Mehrnoor & Maryam Robati & Mir Masoud Kheirkhah Zarkesh & Forough Farsad & Shahram Baikpour, 2023. "Land subsidence hazard assessment based on novel hybrid approach: BWM, weighted overlay index (WOI), and support vector machine (SVM)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 1997-2030, February.
    11. Shangqu Sun & Liping Li & Jing Wang & Shaoshuai Shi & Shuguang Song & Zhongdong Fang & Xingzhi Ba & Hao Jin, 2018. "Karst Development Mechanism and Characteristics Based on Comprehensive Exploration along Jinan Metro, China," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    12. Pius Kirui & Samson Oiro & Hunja Waithaka & Patroba Odera & Björn Riedel & Markus Gerke, 2022. "Detection, characterization, and analysis of land subsidence in Nairobi using InSAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 213-236, August.
    13. Ye-Shuang Xu & Shui-Long Shen & Dong-Jie Ren & Huai-Na Wu, 2016. "Analysis of Factors in Land Subsidence in Shanghai: A View Based on a Strategic Environmental Assessment," Sustainability, MDPI, vol. 8(6), pages 1-12, June.
    14. Wan-Lin Meng & Shuilong Shen & Annan Zhou, 2018. "Investigation on fatal accidents in Chinese construction industry between 2004 and 2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 655-670, November.
    15. Yu-You Yang & Huai-Na Wu & Shui-Long Shen & Suksun Horpibulsuk & Ye-Shuang Xu & Qing-Hong Zhou, 2014. "Environmental impacts caused by phosphate mining and ecological restoration: a case history in Kunming, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 755-770, November.
    16. N. Zhou & S. Zhao, 2013. "Urbanization process and induced environmental geological hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 797-810, June.
    17. Shuai Jiao & Xiaojuan Li & Jie Yu & Mingyuan Lyu & Ke Zhang & Yuehui Li & Pengyuan Shi, 2024. "Multi-Scale Analysis of Surface Building Density and Land Subsidence Using a Combination of Wavelet Transform and Spatial Autocorrelation in the Plains of Beijing," Sustainability, MDPI, vol. 16(7), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-017-2749-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.