IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v24y2010i7p1273-1284.html
   My bibliography  Save this article

An Interactive Fuzzy Satisfying Approach for Sustainable Water Management in the Yellow River Delta, China

Author

Listed:
  • Wei Yang
  • Zhifeng Yang

Abstract

This paper proposes using an interactive fuzzy satisfying method to solve multi-objective optimization problems in integrated water management of the Yellow River Delta, China. The approach involves economic, social and ecological objectives represented by net returns, water deficiency and ecological water requirements, respectively. It considers the decision-maker’s preferences in terms of fuzzy satisfying of each objective and holistic satisfying of all objectives based on Euclid distance. The method avoids the subjectivity of having decision-makers assigning weights to the multiple objectives to some degree. The method is applied to the Yellow River Delta, China. Results indicate that considerably more water should be allocated to ecological uses of water in the Yellow River than currently occurs. An interactive fuzzy satisfying approach for the multi-objective optimization problems has significant potential in the field of integrated water management. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Wei Yang & Zhifeng Yang, 2010. "An Interactive Fuzzy Satisfying Approach for Sustainable Water Management in the Yellow River Delta, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1273-1284, May.
  • Handle: RePEc:spr:waterr:v:24:y:2010:i:7:p:1273-1284
    DOI: 10.1007/s11269-009-9496-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-009-9496-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-009-9496-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao-Chung Yang & Liang-Cheng Chang & Chang-Shian Chen & Ming-Sheng Yeh, 2009. "Multi-objective Planning for Conjunctive Use of Surface and Subsurface Water Using Genetic Algorithm and Dynamics Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 417-437, February.
    2. Mohan, C. & Nguyen, H. T., 1998. "Reference direction interactive method for solving multiobjective fuzzy programming problems," European Journal of Operational Research, Elsevier, vol. 107(3), pages 599-613, June.
    3. Linares, Pedro & Romero, Carlos, 2002. "Aggregation of preferences in an environmental economics context: a goal-programming approach," Omega, Elsevier, vol. 30(2), pages 89-95, April.
    4. Ajit Singh & S. Ghosh & Pankaj Sharma, 2007. "Water quality management of a stretch of river Yamuna: An interactive fuzzy multi-objective approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 515-532, February.
    5. T. Sun & Z. Yang & B. Cui, 2008. "Critical Environmental Flows to Support Integrated Ecological Objectives for the Yellow River Estuary, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 973-989, August.
    6. Tao-Chang Yang & Pao-Shan Yu, 2006. "Application of Fuzzy Multi-Objective Function on Reducing Groundwater Demand for Aquaculture in Land-Subsidence Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(3), pages 377-390, June.
    7. K. Deep & Krishna Singh & M. Kansal & C. Mohan, 2009. "Management of Multipurpose Multireservoir Using Fuzzy Interactive Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2987-3003, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Ashbolt & S. Maheepala & B. Perera, 2014. "A Framework for Short-term Operational Planning for Water Grids," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2367-2380, June.
    2. Alan Murray & Patricia Gober & Luc Anselin & Sergio Rey & David Sampson & Paul Padegimas & Yin Liu, 2012. "Spatial Optimization Models for Water Supply Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2243-2257, June.
    3. Yang, Wei, 2011. "A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China's Yellow River Delta," Ecological Modelling, Elsevier, vol. 222(2), pages 261-267.
    4. Q. Tan & G. Huang & Y. Cai, 2013. "Multi-Source Multi-Sector Sustainable Water Supply Under Multiple Uncertainties: An Inexact Fuzzy-Stochastic Quadratic Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 451-473, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    2. Yang, Wei & Yang, Zhifeng & Qin, Yan, 2011. "An optimization approach for sustainable release of e-flows for lake restoration and preservation: Model development and a case study of Baiyangdian Lake, China," Ecological Modelling, Elsevier, vol. 222(14), pages 2448-2455.
    3. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    4. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    5. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
    6. J González-Pachón & C Romero, 2006. "An analytical framework for aggregating multiattribute utility functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1241-1247, October.
    7. Jacinto González-Pachón & Carlos Romero, 2007. "Inferring consensus weights from pairwise comparison matrices without suitable properties," Annals of Operations Research, Springer, vol. 154(1), pages 123-132, October.
    8. Yang, Wei, 2011. "A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China's Yellow River Delta," Ecological Modelling, Elsevier, vol. 222(2), pages 261-267.
    9. Zong Woo Geem & Jin-Hong Kim, 2016. "Sustainable Optimization for Wastewater Treatment System Using PSF-HS," Sustainability, MDPI, vol. 8(4), pages 1-13, March.
    10. Piotr Wojewnik & Tomasz Szapiro, 2010. "Bireference Procedure fBIP for Interactive Multicriteria Optimization with Fuzzy Coefficients," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 2(3), pages 169-193, June.
    11. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    12. Benítez-Fernández, Amalia & Ruiz, Francisco, 2020. "A Meta-Goal Programming approach to cardinal preferences aggregation in multicriteria problems," Omega, Elsevier, vol. 94(C).
    13. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    14. Gi Joo Kim & Young-Oh Kim, 2021. "How Does the Coupling of Real-World Policies with Optimization Models Expand the Practicality of Solutions in Reservoir Operation Problems?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3121-3137, August.
    15. Chang, Hung-Hao & Boisvert, Richard N. & Hung, Ling-Yi, 2010. "Land subsidence, production efficiency, and the decision of aquacultural firms in Taiwan to discontinue production," Ecological Economics, Elsevier, vol. 69(12), pages 2448-2456, October.
    16. M. Mohammad Rezapour Tabari, 2015. "Conjunctive Use Management under Uncertainty Conditions in Aquifer Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2967-2986, June.
    17. Inkyung Min & Nakyung Lee & Sanha Kim & Yelim Bang & Juyeon Jang & Kichul Jung & Daeryong Park, 2024. "An Improved Aggregation–Decomposition Optimization Approach for Ecological Flow Supply in Parallel Reservoir Systems," Sustainability, MDPI, vol. 16(17), pages 1-22, August.
    18. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    19. D. Morankar & K. Srinivasa Raju & D. Nagesh Kumar, 2013. "Integrated Sustainable Irrigation Planning with Multiobjective Fuzzy Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 3981-4004, September.
    20. Mohamad Fulazzaky, 2009. "Water Quality Evaluation System to Assess the Brantas River Water," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3019-3033, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:24:y:2010:i:7:p:1273-1284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.