IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v75y2015i3p2637-2652.html
   My bibliography  Save this article

Spatial correlation between land subsidence and urbanization in Beijing, China

Author

Listed:
  • Beibei Chen
  • Huili Gong
  • Xiaojuan Li
  • Kunchao Lei
  • Yinghai Ke
  • Guangyao Duan
  • Chaofan Zhou

Abstract

The large-scale construction of buildings, extensive road and rail networks, and increased traffic flow associated with urbanization has the potential to cause land subsidence. Land subsidence caused by urbanization is an increasingly significant problem in Beijing, China; therefore, it is important to investigate the relationship between urbanization and land subsidence. Landsat TM images covering the Beijing plain were used to acquire spatial changes information of built-up areas by calculating an index-based built-up index (IBI). We used ENVISAT Advanced Synthetic Aperture Radar data acquired from 2003 to 2009 and persistent scatterers for SAR interferometry (PSI) technology to estimate land subsidence. Geographic information systems spatial analysis method was used to identify the relationship between the settlement rate and the IBI value for three different sampling units. The result showed that it was a positive correlation between construction density and land subsidence; for land subsidence, the effect from the combination of high-density building clusters and extensive transportation networks was more significant than the presence of buildings alone. However, there may be a delay between the completion of building construction and the development of land subsidence. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Beibei Chen & Huili Gong & Xiaojuan Li & Kunchao Lei & Yinghai Ke & Guangyao Duan & Chaofan Zhou, 2015. "Spatial correlation between land subsidence and urbanization in Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2637-2652, February.
  • Handle: RePEc:spr:nathaz:v:75:y:2015:i:3:p:2637-2652
    DOI: 10.1007/s11069-014-1451-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1451-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1451-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasanuddin Abidin & Rochman Djaja & Dudy Darmawan & Samsul Hadi & Arifin Akbar & H. Rajiyowiryono & Y. Sudibyo & I. Meilano & M. Kasuma & J. Kahar & Cecep Subarya, 2001. "Land Subsidence of Jakarta (Indonesia) and its Geodetic Monitoring System," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(2), pages 365-387, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Tie-Ying & Su, Chi-Wei, 2021. "Is transportation improving urbanization in China?," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    2. Elham Hosseinzadeh & Sara Anamaghi & Massoud Behboudian & Zahra Kalantari, 2024. "Evaluating Machine Learning-Based Approaches in Land Subsidence Susceptibility Mapping," Land, MDPI, vol. 13(3), pages 1-27, March.
    3. Pius Kirui & Samson Oiro & Hunja Waithaka & Patroba Odera & Björn Riedel & Markus Gerke, 2022. "Detection, characterization, and analysis of land subsidence in Nairobi using InSAR," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 213-236, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hasanuddin Abidin & Heri Andreas & Irwan Gumilar & Yoichi Fukuda & Yusuf Pohan & T. Deguchi, 2011. "Land subsidence of Jakarta (Indonesia) and its relation with urban development," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1753-1771, December.
    2. P. Ward & M. Marfai & F. Yulianto & D. Hizbaron & J. Aerts, 2011. "Coastal inundation and damage exposure estimation: a case study for Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 899-916, March.
    3. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    4. Beibei Hu & Jun Zhou & Shiyuan Xu & Zhenlou Chen & Jun Wang & Dongqi Wang & Lei Wang & Jifa Guo & Weiqing Meng, 2013. "Assessment of hazards and economic losses induced by land subsidence in Tianjin Binhai new area from 2011 to 2020 based on scenario analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 873-886, March.
    5. Zhongyuan Gu & Miaocong Cao & Chunguang Wang & Na Yu & Hongyu Qing, 2022. "Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model," Sustainability, MDPI, vol. 14(16), pages 1-12, August.
    6. Rejane Maria Rodrigues Luna & Silvio Jacks Garnés & Jaime Joaquim Cabral & Sylvana Melo Santos, 2021. "Suitability of GNSS for analysis of soil subsidence in Recife in a highly urbanized coastal area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1821-1837, April.
    7. Karl Wyatt Espiritu & Christian James Reyes & Theresa Marie Benitez & Reina Clarise Tokita & Lear Joseph Galvez & Ryan Ramirez, 2022. "Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) reveals continued ground deformation in and around Metro Manila, Philippines, associated with groundwater exploitation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3139-3161, December.
    8. Haushofer, Jakob, 2018. "Towards a climate-resilient Jakarta: An analysis of the resilience thinking behind Jakarta's current public policy approach to climate-related hazards," ÖFSE-Forum, Austrian Foundation for Development Research (ÖFSE), volume 65, number 65.
    9. Sylvana Santos & Jaime Cabral & Ivaldo Pontes Filho, 2012. "Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 421-439, October.
    10. Huafeng Xu & Bin Liu & Zhigeng Fang, 2014. "New grey prediction model and its application in forecasting land subsidence in coal mine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(2), pages 1181-1194, March.
    11. Dayang Xuan & Jialin Xu, 2014. "Grout injection into bed separation to control surface subsidence during longwall mining under villages: case study of Liudian coal mine, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 883-906, September.
    12. Bijuan Huang & Longcang Shu & Y. Yang, 2012. "Groundwater Overexploitation Causing Land Subsidence: Hazard Risk Assessment Using Field Observation and Spatial Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4225-4239, November.
    13. Cheinway Hwang & Wei-Chia Hung & Chih-Hsi Liu, 2008. "Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(1), pages 1-16, October.
    14. Muh Marfai & Andung Sekaranom & Philip Ward, 2015. "Community responses and adaptation strategies toward flood hazard in Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1127-1144, January.
    15. Richa Bhattarai & Haireti Alifu & Aikebaier Maitiniyazi & Akihiko Kondoh, 2017. "Detection of Land Subsidence in Kathmandu Valley, Nepal, Using DInSAR Technique," Land, MDPI, vol. 6(2), pages 1-17, June.
    16. Ali M. Rajabi, 2018. "A numerical study on land subsidence due to extensive overexploitation of groundwater in Aliabad plain, Qom-Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 1085-1103, September.
    17. Jianxiu Wang & Xueying Gu & Yukun Jiang & Tianrong Huang & Bo Feng, 2013. "Point-line-area-volume index system of land subsidence and application in Ningbo, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 2197-2214, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:75:y:2015:i:3:p:2637-2652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.