IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v25y2011i5p1341-1357.html
   My bibliography  Save this article

Clustered K Nearest Neighbor Algorithm for Daily Inflow Forecasting

Author

Listed:
  • Mahmood Akbari
  • Peter Overloop
  • Abbas Afshar

Abstract

Instance based learning (IBL) algorithms are a common choice among data driven algorithms for inflow forecasting. They are based on the similarity principle and prediction is made by the finite number of similar neighbors. In this sense, the similarity of a query instance is estimated according to the closeness of its feature vector with those of data available in calibration data. As the selected attributes in the feature vector are determined overall on calibration data, there may be some data points whose outputs do not follow the considered attributes. In fact, output values of these inconsistent data points may be a function of some other attributes which were not considered. Therefore, for some query instances, the inconsistent points may be appeared as the neighbors while they may not really be neighbor to the query instance. They can deteriorate forecasting results especially if they are very close to the query instance with the current similarity definition. In this study a clustered K nearest neighbor (CKNN) algorithm is introduced which can capture these inconsistent data points. Similar to the inconsistent data points, CKNN can be also robust against noisy data. The proposed algorithm was shown to be effective for a synthetic linear data set corrupted by noise. In addition, the utility of the algorithm was demonstrated for daily inflow forecasting of the Karoon1 reservoir located in Iran. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Mahmood Akbari & Peter Overloop & Abbas Afshar, 2011. "Clustered K Nearest Neighbor Algorithm for Daily Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1341-1357, March.
  • Handle: RePEc:spr:waterr:v:25:y:2011:i:5:p:1341-1357
    DOI: 10.1007/s11269-010-9748-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-010-9748-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-010-9748-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed El-Shafie & Alaa Abdin & Aboelmagd Noureldin & Mohd Taha, 2009. "Enhancing Inflow Forecasting Model at Aswan High Dam Utilizing Radial Basis Neural Network and Upstream Monitoring Stations Measurements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2289-2315, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances," Renewable Energy, Elsevier, vol. 80(C), pages 770-782.
    2. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
    3. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    4. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
    5. Unsok Ryu & Jian Wang & Unjin Pak & Sonil Kwak & Kwangchol Ri & Junhyok Jang & Kyongjin Sok, 2022. "A clustering based traffic flow prediction method with dynamic spatiotemporal correlation analysis," Transportation, Springer, vol. 49(3), pages 951-988, June.
    6. Mingxiang Yang & Hao Wang & Yunzhong Jiang & Xing Lu & Zhao Xu & Guangdong Sun, 2020. "GECA Proposed Ensemble–KNN Method for Improved Monthly Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 849-863, January.
    7. Silva, Rodolfo Rodrigues Barrionuevo & Martins, André Christóvão Pio & Soler, Edilaine Martins & Baptista, Edméa Cássia & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2022. "Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems," Energy Economics, Elsevier, vol. 107(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Seyam & Faridah Othman & Ahmed El-Shafie, 2017. "RBFNN Versus Empirical Models for Lag Time Prediction in Tropical Humid Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 187-204, January.
    2. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    3. Ahmed El-Shafie & Ali Najah & Humod Alsulami & Heerbod Jahanbani, 2014. "Optimized Neural Network Prediction Model for Potential Evapotranspiration Utilizing Ensemble Procedure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 947-967, March.
    4. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    5. Andres Ticlavilca & Mac McKee, 2011. "Multivariate Bayesian Regression Approach to Forecast Releases from a System of Multiple Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 523-543, January.
    6. Valipour, Mohammad & Gholami Sefidkouhi, Mohammad Ali & Raeini−Sarjaz, Mahmoud, 2017. "Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events," Agricultural Water Management, Elsevier, vol. 180(PA), pages 50-60.
    7. David Robertson & Q. Wang, 2013. "Seasonal Forecasts of Unregulated Inflows into the Murray River, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2747-2769, June.
    8. Nariman Valizadeh & Majid Mirzaei & Mohammed Falah Allawi & Haitham Abdulmohsin Afan & Nuruol Syuhadaa Mohd & Aini Hussain & Ahmed El-Shafie, 2017. "Artificial intelligence and geo-statistical models for stream-flow forecasting in ungauged stations: state of the art," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1377-1392, April.
    9. Wei Ouyang & Fanghua Hao & Kaiyu Song & Xuan Zhang, 2011. "Cascade Dam-Induced Hydrological Disturbance and Environmental Impact in the Upper Stream of the Yellow River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 913-927, February.
    10. Mohammad Dorofki & Ahmed Elshafie & Othman Jaafar & Othman Karim & Sharifah Abdullah, 2014. "A GIS-ANN-Based Approach for Enhancing the Effect of Slope in the Modified Green-Ampt Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 391-406, January.
    11. Behrooz Keshtegar & Mohammed Falah Allawi & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2016. "Optimized River Stream-Flow Forecasting Model Utilizing High-Order Response Surface Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3899-3914, September.
    12. Muhammad Sulaiman & Ahmed El-Shafie & Othman Karim & Hassan Basri, 2011. "Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2525-2541, August.
    13. Guang Yang & Shenglian Guo & Pan Liu & Xiaofeng Liu & Jiabo Yin, 2020. "Heuristic Input Variable Selection in Multi-Objective Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 617-636, January.
    14. Hossam M. Ahmed & Ayman G. Awadallah & Alaa El-Din M. El-Zawahry & Khaled H. Hamed, 2022. "Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 741-763, January.
    15. Mohammed Falah Allawi & Ahmed El-Shafie, 2016. "Utilizing RBF-NN and ANFIS Methods for Multi-Lead ahead Prediction Model of Evaporation from Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4773-4788, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:25:y:2011:i:5:p:1341-1357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.