IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i1d10.1007_s11069-021-04968-3.html
   My bibliography  Save this article

Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks

Author

Listed:
  • Hossam M. Ahmed

    (Cairo University)

  • Ayman G. Awadallah

    (Fayoum University)

  • Alaa El-Din M. El-Zawahry

    (Cairo University)

  • Khaled H. Hamed

    (Cairo University)

Abstract

The Nile River provides Egypt with most of its water resources. Medium- and long-rage forecasts of Nile flows at Aswan have been recognized as of significant importance to allow better management and operation of the water resource facilities and mitigate the risks of both droughts and floods. In this study, a wide range of climate indices and atmospheric fields were used as potential predictors for long-range forecasting of Nile streamflow for one flood season ahead (July–October). The approach followed in this study focuses on searching for potential predictors, reducing the pool of potential predictors by using multivariate statistical analysis, applying sequentially, Canonical Correlation Analysis, Principal Component Analysis, and multiple linear regression to robustly forecast the Nile flow. The proposed approach proved to be very useful for improving long-range Nile River flow forecasting. It revealed the adequacy of the models and enhanced the accuracy of the predictions of the full spectrum of droughts and floods, both in the calibration and validation phases, over the simple stepwise regression method using all climate indices and atmospheric fields as potential predictors.

Suggested Citation

  • Hossam M. Ahmed & Ayman G. Awadallah & Alaa El-Din M. El-Zawahry & Khaled H. Hamed, 2022. "Multivariate analysis for medium- and long-range forecasting of Nile River flow to mitigate drought and flood risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 741-763, January.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04968-3
    DOI: 10.1007/s11069-021-04968-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04968-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04968-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basak, Gopal K & Chan, Ngai Hang & Palma, Wilfredo, 2001. "The Approximation of Long-Memory Processes by an ARMA Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(6), pages 367-389, September.
    2. Ahmed El-Shafie & Alaa Abdin & Aboelmagd Noureldin & Mohd Taha, 2009. "Enhancing Inflow Forecasting Model at Aswan High Dam Utilizing Radial Basis Neural Network and Upstream Monitoring Stations Measurements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2289-2315, September.
    3. Ahmed El-Shafie & Mahmoud Taha & Aboelmagd Noureldin, 2007. "A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 533-556, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Sulaiman & Ahmed El-Shafie & Othman Karim & Hassan Basri, 2011. "Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2525-2541, August.
    2. Ahmed El-Shafie & Ali Najah & Humod Alsulami & Heerbod Jahanbani, 2014. "Optimized Neural Network Prediction Model for Potential Evapotranspiration Utilizing Ensemble Procedure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 947-967, March.
    3. Andres Ticlavilca & Mac McKee, 2011. "Multivariate Bayesian Regression Approach to Forecast Releases from a System of Multiple Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 523-543, January.
    4. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    5. Wensheng Wang & Juliang Jin & Yueqing Li, 2009. "Prediction of Inflow at Three Gorges Dam in Yangtze River with Wavelet Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2791-2803, October.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    8. Dalibor Petković & Milan Gocic & Slavisa Trajkovic & Miloš Milovančević & Dragoljub Šević, 2017. "Precipitation concentration index management by adaptive neuro-fuzzy methodology," Climatic Change, Springer, vol. 141(4), pages 655-669, April.
    9. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    10. Jehangir Awan & Deg-Hyo Bae, 2014. "Improving ANFIS Based Model for Long-term Dam Inflow Prediction by Incorporating Monthly Rainfall Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1185-1199, March.
    11. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    12. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW Kiel).
    13. David Robertson & Q. Wang, 2013. "Seasonal Forecasts of Unregulated Inflows into the Murray River, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2747-2769, June.
    14. Yahia Mutalib Tofiq & Sarmad Dashti Latif & Ali Najah Ahmed & Pavitra Kumar & Ahmed El-Shafie, 2022. "Optimized Model Inputs Selections for Enhancing River Streamflow Forecasting Accuracy Using Different Artificial Intelligence Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5999-6016, December.
    15. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    16. Mohammad Dorofki & Ahmed Elshafie & Othman Jaafar & Othman Karim & Sharifah Abdullah, 2014. "A GIS-ANN-Based Approach for Enhancing the Effect of Slope in the Modified Green-Ampt Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 391-406, January.
    17. Hadi Sanikhani & Ozgur Kisi & Mohammad Nikpour & Yagob Dinpashoh, 2012. "Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4347-4365, December.
    18. Guang Yang & Shenglian Guo & Pan Liu & Xiaofeng Liu & Jiabo Yin, 2020. "Heuristic Input Variable Selection in Multi-Objective Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 617-636, January.
    19. Lux, Thomas & Kaizoji, Taisei, 2007. "Forecasting volatility and volume in the Tokyo Stock Market: Long memory, fractality and regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1808-1843, June.
    20. Reza Mohammadpour & Aminuddin Ghani & Mohammadtaghi Vakili & Tooraj Sabzevari, 2016. "Prediction of temporal scour hazard at bridge abutment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1891-1911, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:1:d:10.1007_s11069-021-04968-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.