IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v49y2022i3d10.1007_s11116-021-10200-9.html
   My bibliography  Save this article

A clustering based traffic flow prediction method with dynamic spatiotemporal correlation analysis

Author

Listed:
  • Unsok Ryu

    (Harbin Institute of Technology
    Kim Il Sung University)

  • Jian Wang

    (Harbin Institute of Technology)

  • Unjin Pak

    (Kim Chaek University of Technology)

  • Sonil Kwak

    (Kim Il Sung University)

  • Kwangchol Ri

    (Kim Il Sung University)

  • Junhyok Jang

    (Kim Il Sung University)

  • Kyongjin Sok

    (University of Sciences)

Abstract

There are significant spatiotemporal correlations among the traffic flows of neighboring road sections in the road network. Correctly identifying such correlations makes an essential contribution for improving the accuracy of traffic flow prediction. Many efforts have been made by several researchers to solve this issue, but they assume that the spatiotemporal correlations among traffic flows are stationary in both time and space, i.e., the degrees to which traffic flows affect each other are fixed. In this study, we propose a clustering based traffic flow prediction method that considers the dynamic nature of spatiotemporal correlations. In order to express the short-term dependence between the target road section and neighboring ones, the spatiotemporal correlation matrices are introduced. The historical traffic data are divided into several clusters according to the similarity between spatiotemporal correlation matrices. The spatiotemporal correlation analysis and the predictor selection based on the mutual information are performed in each cluster, and the multiple prediction models are trained separately. A prediction model corresponding to the cluster to which the current traffic pattern belongs is selected to output the prediction result. Experimental results on real traffic data show that the proposed method achieves good prediction accuracy by distinguishing the heterogeneity of spatiotemporal correlations among the traffic flows.

Suggested Citation

  • Unsok Ryu & Jian Wang & Unjin Pak & Sonil Kwak & Kwangchol Ri & Junhyok Jang & Kyongjin Sok, 2022. "A clustering based traffic flow prediction method with dynamic spatiotemporal correlation analysis," Transportation, Springer, vol. 49(3), pages 951-988, June.
  • Handle: RePEc:kap:transp:v:49:y:2022:i:3:d:10.1007_s11116-021-10200-9
    DOI: 10.1007/s11116-021-10200-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10200-9
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10200-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hilmi Berk Celikoglu & Mehmet Ali Silgu, 2016. "Extension of Traffic Flow Pattern Dynamic Classification by a Macroscopic Model Using Multivariate Clustering," Transportation Science, INFORMS, vol. 50(3), pages 966-981, August.
    2. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    3. Tang, Jinjun & Chen, Xinqiang & Hu, Zheng & Zong, Fang & Han, Chunyang & Li, Leixiao, 2019. "Traffic flow prediction based on combination of support vector machine and data denoising schemes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    4. Lawrence W. Lan & Feng-Yu Lin & April Y. Kuo, 2010. "Three Novel Methods to Predict Traffic Time Series in Reconstructed State Spaces," International Journal of Applied Evolutionary Computation (IJAEC), IGI Global, vol. 1(1), pages 16-35, January.
    5. Mahmood Akbari & Peter Overloop & Abbas Afshar, 2011. "Clustered K Nearest Neighbor Algorithm for Daily Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1341-1357, March.
    6. Tao Cheng & James Haworth & Jiaqiu Wang, 2012. "Spatio-temporal autocorrelation of road network data," Journal of Geographical Systems, Springer, vol. 14(4), pages 389-413, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    2. Junjie Fu & Xinqiang Chen & Shubo Wu & Chaojian Shi & Huafeng Wu & Jiansen Zhao & Pengwen Xiong, 2020. "Mining ship deficiency correlations from historical port state control (PSC) inspection data," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-19, February.
    3. Qing Luo & Daniel A. Griffith & Huayi Wu, 2019. "Spatial autocorrelation for massive spatial data: verification of efficiency and statistical power asymptotics," Journal of Geographical Systems, Springer, vol. 21(2), pages 237-269, June.
    4. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    5. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    6. Qu, Zhijian & Xu, Juan & Wang, Zixiao & Chi, Rui & Liu, Hanxin, 2021. "Prediction of electricity generation from a combined cycle power plant based on a stacking ensemble and its hyperparameter optimization with a grid-search method," Energy, Elsevier, vol. 227(C).
    7. Hongxia Ge & Siteng Li & Rongjun Cheng & Zhenlei Chen, 2022. "Self-Attention ConvLSTM for Spatiotemporal Forecasting of Short-Term Online Car-Hailing Demand," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    8. Yan, Ying & Zhang, Ying & Yang, Xiangli & Hu, Jin & Tang, Jinjun & Guo, Zhongyin, 2020. "Crash prediction based on random effect negative binomial model considering data heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    9. Shenghan Zhou & Chaofan Wei & Chaofei Song & Yu Fu & Rui Luo & Wenbing Chang & Linchao Yang, 2022. "A Hybrid Deep Learning Model for Short-Term Traffic Flow Pre-Diction Considering Spatiotemporal Features," Sustainability, MDPI, vol. 14(16), pages 1-14, August.
    10. Alisson Assis Cardoso & Flávio Henrique Teles Vieira, 2019. "Adaptive fuzzy flow rate control considering multifractal traffic modeling and 5G communications," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-22, November.
    11. Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
    12. Mingxiang Yang & Hao Wang & Yunzhong Jiang & Xing Lu & Zhao Xu & Guangdong Sun, 2020. "GECA Proposed Ensemble–KNN Method for Improved Monthly Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 849-863, January.
    13. Peng, Yanni & Xiang, Wanli, 2020. "Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    14. Silva, Rodolfo Rodrigues Barrionuevo & Martins, André Christóvão Pio & Soler, Edilaine Martins & Baptista, Edméa Cássia & Balbo, Antonio Roberto & Nepomuceno, Leonardo, 2022. "Two-stage stochastic energy procurement model for a large consumer in hydrothermal systems," Energy Economics, Elsevier, vol. 107(C).
    15. Du, Zhouyang & Tang, Jinjun & Qi, Yong & Wang, Yiwei & Han, Chunyang & Yang, Yifan, 2020. "Identifying critical nodes in metro network considering topological potential: A case study in Shenzhen city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    16. Chen, Xinqiang & Chen, Huixing & Yang, Yongsheng & Wu, Huafeng & Zhang, Wenhui & Zhao, Jiansen & Xiong, Yong, 2021. "Traffic flow prediction by an ensemble framework with data denoising and deep learning model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    17. Alireza Ermagun & David M Levinson, 2019. "Development and application of the network weight matrix to predict traffic flow for congested and uncongested conditions," Environment and Planning B, , vol. 46(9), pages 1684-1705, November.
    18. Jenelius, Erik & Koutsopoulos, Haris N., 2013. "Travel time estimation for urban road networks using low frequency probe vehicle data," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 64-81.
    19. Zhang, Liye & Meng, Qiang & Fang Fwa, Tien, 2019. "Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 287-304.
    20. Dongqing Zhang & Zhaoxia Guo, 2019. "On the Necessity and Effects of Considering Correlated Stochastic Speeds in Shortest Path Problems Under Sustainable Environments," Sustainability, MDPI, vol. 12(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:49:y:2022:i:3:d:10.1007_s11116-021-10200-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.