IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i13d10.1007_s11269-019-02414-5.html
   My bibliography  Save this article

Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation

Author

Listed:
  • Zhiqiang Jiang

    (Huazhong University of Science and Technology)

  • Zhengyang Tang

    (China Yangtze Power Company Limited)

  • Yi Liu

    (Huazhong University of Science and Technology)

  • Yuyun Chen

    (Huazhong University of Science and Technology)

  • Zhongkai Feng

    (Huazhong University of Science and Technology)

  • Yang Xu

    (China Yangtze Power Company Limited)

  • Hairong Zhang

    (China Yangtze Power Company Limited)

Abstract

As an important input of hydropower stations operation, the forecasted inflow provided by forecaster directly determines the power generation efficiency of hydropower stations. In order to promote the self-improvement of forecasters’ forecasting level through effective reward and punishment, it is necessary to determine a fair and reasonable comprehensive forecasting level evaluation method. In view of this, this paper puts forward the concept of forecasting difficulty, and classifies the external forecasting situations according to different rainfall conditions, different forecasting foresight periods and different inflow levels. Based on the physical meaning of forecasting difficulty, a new calculation method of forecasting difficulty using the error distribution and area moment is proposed in this paper, which can realize the forecasting difficulty calculation under different situations and different forecasting level standards. Coupling the forecasting difficulty coefficient with the forecasting level evaluation, a comprehensive forecasting level evaluation method of forecasters is proposed. The case study results show that, because the forecasting difficulty of different forecasting situations are considered in the proposed method, the higher the forecast accuracy of a forecaster in difficult situations (such as rainy situation), the higher his/her comprehensive forecast level. The result obtained by this method is fairer and more reasonable compared with the traditional method, which is of great significance to promote the forecasting level of forecasters in difficult situations.

Suggested Citation

  • Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:13:d:10.1007_s11269-019-02414-5
    DOI: 10.1007/s11269-019-02414-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02414-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02414-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Rongbo & Jiang, Zhiqiang & Ji, Changming & Li, Anqiang & Yu, Shan, 2018. "An improved risk-benefit collaborative grey target decision model and its application in the decision making of load adjustment schemes," Energy, Elsevier, vol. 156(C), pages 387-400.
    2. Jiang, Zhiqiang & Ji, Changming & Qin, Hui & Feng, Zhongkai, 2018. "Multi-stage progressive optimality algorithm and its application in energy storage operation chart optimization of cascade reservoirs," Energy, Elsevier, vol. 148(C), pages 309-323.
    3. Ping Sun & Zhi-qiang Jiang & Ting-ting Wang & Yan-ke Zhang, 2016. "Research and Application of Parallel Normal Cloud Mutation Shuffled Frog Leaping Algorithm in Cascade Reservoirs Optimal Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1019-1035, February.
    4. Ahmed El-Shafie & Alaa Abdin & Aboelmagd Noureldin & Mohd Taha, 2009. "Enhancing Inflow Forecasting Model at Aswan High Dam Utilizing Radial Basis Neural Network and Upstream Monitoring Stations Measurements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2289-2315, September.
    5. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    6. Stergios Fotopoulos & Lijian He, 1999. "Error Bounds for Asymptotic Expansion of the Conditional Variance of the Scale Mixtures of the Multivariate Normal Distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 51(4), pages 731-747, December.
    7. Fernando Mainardi Fan & Dirk Schwanenberg & Rodolfo Alvarado & Alberto Assis dos Reis & Walter Collischonn & Steffi Naumman, 2016. "Performance of Deterministic and Probabilistic Hydrological Forecasts for the Short-Term Optimization of a Tropical Hydropower Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3609-3625, August.
    8. Huaping Huang & Zhongmin Liang & Binquan Li & Dong Wang & Yiming Hu & Yujie Li, 2019. "Combination of Multiple Data-Driven Models for Long-Term Monthly Runoff Predictions Based on Bayesian Model Averaging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3321-3338, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiqiang Jiang & Peibing Song & Xiang Liao, 2020. "Optimization of Year-End Water Level of Multi-Year Regulating Reservoir in Cascade Hydropower System Considering the Inflow Frequency Difference," Energies, MDPI, vol. 13(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smitha, T.V. & Nagaraja, K.V., 2019. "Application of automated cubic-order mesh generation for efficient energy transfer using parabolic arcs for microwave problems," Energy, Elsevier, vol. 168(C), pages 1104-1118.
    2. Sun, Hong & Yu, Mingfu & Li, Qiang & Zhuang, Kaiming & Li, Jie & Almheiri, Saif & Zhang, Xiaochen, 2019. "Characteristics of charge/discharge and alternating current impedance in all-vanadium redox flow batteries," Energy, Elsevier, vol. 168(C), pages 693-701.
    3. Kumar, Pankaj & Banerjee, Rangan & Mishra, Trupti, 2020. "A framework for analyzing trade-offs in cost and emissions in power sector," Energy, Elsevier, vol. 195(C).
    4. Luo, Xiaoyuan & Wang, Xinyu & Zhang, Mingyue & Guan, Xinping, 2019. "Distributed detection and isolation of bias injection attack in smart energy grid via interval observer," Applied Energy, Elsevier, vol. 256(C).
    5. Penghui Ma & Yajin Hu & Hansheng Liu & Yuannong Li, 2020. "The Optimum Design Criteria for On-demand Pressurized Microirrigation Network Systems: Optimizing Subunits with Paired Laterals based on the Maximum Size," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3237-3255, August.
    6. Chang, Soowon & Saha, Nirvik & Castro-Lacouture, Daniel & Yang, Perry Pei-Ju, 2019. "Multivariate relationships between campus design parameters and energy performance using reinforcement learning and parametric modeling," Applied Energy, Elsevier, vol. 249(C), pages 253-264.
    7. Mohammed Seyam & Faridah Othman & Ahmed El-Shafie, 2017. "RBFNN Versus Empirical Models for Lag Time Prediction in Tropical Humid Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 187-204, January.
    8. Xinyu Wu & Yuan Lei & Chuntian Cheng & Qilin Ying, 2023. "An Optimal Operation Method for Parallel Hydropower Systems Combining Reservoir Level Control and Power Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1729-1745, March.
    9. Crescenzo Pepe & Silvia Maria Zanoli, 2024. "Digitalization, Industry 4.0, Data, KPIs, Modelization and Forecast for Energy Production in Hydroelectric Power Plants: A Review," Energies, MDPI, vol. 17(4), pages 1-35, February.
    10. Ana C. Cebrián & Ricardo Salillas, 2021. "Forecasting High-Frequency River Level Series Using Double Switching Regression with ARMA Errors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 299-313, January.
    11. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    12. Jiang, Zhiqiang & Li, Anqiang & Ji, Changming & Qin, Hui & Yu, Shan & Li, Yuanzheng, 2016. "Research and application of key technologies in drawing energy storage operation chart by discriminant coefficient method," Energy, Elsevier, vol. 114(C), pages 774-786.
    13. Majid Mohammadi & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2019. "Investigation of a New Hybrid Optimization Algorithm Performance in the Optimal Operation of Multi-Reservoir Benchmark Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4767-4782, November.
    14. Yi Liu & Zhiqiang Jiang & Zhongkai Feng & Yuyun Chen & Hairong Zhang & Ping Chen, 2019. "Optimization of Energy Storage Operation Chart of Cascade Reservoirs with Multi-Year Regulating Reservoir," Energies, MDPI, vol. 12(20), pages 1-20, October.
    15. Liu, Jia & Zeng, Peter Pingliang & Xing, Hao & Li, Yalou & Wu, Qiuwei, 2020. "Hierarchical duality-based planning of transmission networks coordinating active distribution network operation," Energy, Elsevier, vol. 213(C).
    16. Jônatas Belotti & Hugo Siqueira & Lilian Araujo & Sérgio L. Stevan & Paulo S.G. de Mattos Neto & Manoel H. N. Marinho & João Fausto L. de Oliveira & Fábio Usberti & Marcos de Almeida Leone Filho & Att, 2020. "Neural-Based Ensembles and Unorganized Machines to Predict Streamflow Series from Hydroelectric Plants," Energies, MDPI, vol. 13(18), pages 1-22, September.
    17. Zhe Yang & Kan Yang & Hu Hu & Lyuwen Su, 2019. "The Cascade Reservoirs Multi-Objective Ecological Operation Optimization Considering Different Ecological Flow Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 207-228, January.
    18. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    19. Ahmed El-Shafie & Ali Najah & Humod Alsulami & Heerbod Jahanbani, 2014. "Optimized Neural Network Prediction Model for Potential Evapotranspiration Utilizing Ensemble Procedure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 947-967, March.
    20. Hajirahimi, Zahra & Khashei, Mehdi, 2022. "Series Hybridization of Parallel (SHOP) models for time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:13:d:10.1007_s11269-019-02414-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.