IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v30y2016i11d10.1007_s11269-016-1397-4.html
   My bibliography  Save this article

Optimized River Stream-Flow Forecasting Model Utilizing High-Order Response Surface Method

Author

Listed:
  • Behrooz Keshtegar

    (University of Zabol)

  • Mohammed Falah Allawi

    (Universiti Kebangsaan Malaysia)

  • Haitham Abdulmohsin Afan

    (Universiti Kebangsaan Malaysia)

  • Ahmed El-Shafie

    (University Malaya)

Abstract

Accurate and reliable stream-flow forecasting has a key role in water resources planning and management. Most recently, soft computing approaches have become progressively prevalent in modelling hydrological variables and most specifically stream-flows. This is due to their ability to capture the non-linearity and non-stationarity characteristics of the hydrological variables with minimum information requirements. Despite this, they present several challenges in the modelling architecture, as there is a need to establish a suitable pre-processing method for the stream-flow data and an appropriate optimization model has to be integrated in order re-adjust the weights and biases associated with the model structure. On top of that, artificial intelligent models require “trial and error” procedures in order to be properly tuned (number of hidden layers, number of neurons within the hidden layers and the type of the transfer function). However, soft computing approach experienced several problems while calibration such as over-fitting. In this research, the Response Surface Method (RSM) is improved based on high-order polynomial functions for forecasting the river stream-flow namely; High-Order Response Surface (HORS) method. Several higher orders have been examined, second, third, fourth and fifth polynomial functions in order to figure out the best fit that able to mimic the pattern of stream-flow. In order to demonstrate the effectiveness of the proposed model, monthly stream-flow time series data located in Aswan High Dam (AHD) has been examined. A detailed analysis of the overall statistical indicators revealed that the proposed method showed outstanding performance for monthly stream-flow forecasting at AHD. It could be concluded that the fifth order polynomial function outperforms the other orders of the polynomial functions especially with May model who achieved minimum MAE 0.12, NRMSE 0.07, MSE 0.03 and maximum SF and R2 (0.97, 0.99) respectively.

Suggested Citation

  • Behrooz Keshtegar & Mohammed Falah Allawi & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2016. "Optimized River Stream-Flow Forecasting Model Utilizing High-Order Response Surface Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3899-3914, September.
  • Handle: RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1397-4
    DOI: 10.1007/s11269-016-1397-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1397-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1397-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.
    2. Ahmed El-Shafie & Alaa Abdin & Aboelmagd Noureldin & Mohd Taha, 2009. "Enhancing Inflow Forecasting Model at Aswan High Dam Utilizing Radial Basis Neural Network and Upstream Monitoring Stations Measurements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2289-2315, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarmad Dashti Latif & Ali Najah Ahmed & Edlic Sathiamurthy & Yuk Feng Huang & Ahmed El-Shafie, 2021. "Evaluation of deep learning algorithm for inflow forecasting: a case study of Durian Tunggal Reservoir, Peninsular Malaysia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 351-369, October.
    2. Yutao Qi & Zhanao Zhou & Lingling Yang & Yining Quan & Qiguang Miao, 2019. "A Decomposition-Ensemble Learning Model Based on LSTM Neural Network for Daily Reservoir Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4123-4139, September.
    3. Majid Dehghani & Hossein Riahi-Madvar & Farhad Hooshyaripor & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Kwok-wing Chau, 2019. "Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 12(2), pages 1-20, January.
    4. Ataee, Sadegh & Ameri, Mehran & Askari, Ighball Baniasad & Keshtegar, Behrooz, 2024. "Evaluation and intelligent forecasting of energy and exergy efficiencies of a nanofluid-based filled-type U-pipe solar ETC using three machine learning approaches," Energy, Elsevier, vol. 298(C).
    5. Asim Jahangir Khan & Manfred Koch & Adnan Ahmad Tahir, 2020. "Impacts of Climate Change on the Water Availability, Seasonality and Extremes in the Upper Indus Basin (UIB)," Sustainability, MDPI, vol. 12(4), pages 1-27, February.
    6. Keshtegar, Behrooz & Mert, Cihan & Kisi, Ozgur, 2018. "Comparison of four heuristic regression techniques in solar radiation modeling: Kriging method vs RSM, MARS and M5 model tree," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 330-341.
    7. Hai Tao & Behrooz Keshtegar & Zaher Mundher Yaseen, 2019. "The Feasibility of Integrative Radial Basis M5Tree Predictive Model for River Suspended Sediment Load Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4471-4490, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Falah Allawi & Ahmed El-Shafie, 2016. "Utilizing RBF-NN and ANFIS Methods for Multi-Lead ahead Prediction Model of Evaporation from Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4773-4788, October.
    2. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    3. Zhiqiang Jiang & Zhengyang Tang & Yi Liu & Yuyun Chen & Zhongkai Feng & Yang Xu & Hairong Zhang, 2019. "Area Moment and Error Based Forecasting Difficulty and its Application in Inflow Forecasting Level Evaluation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(13), pages 4553-4568, October.
    4. Xue-hua Zhao & Xu Chen, 2015. "Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2913-2926, June.
    5. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    6. Zaher Mundher Yaseen & Majeed Mattar Ramal & Lamine Diop & Othman Jaafar & Vahdettin Demir & Ozgur Kisi, 2018. "Hybrid Adaptive Neuro-Fuzzy Models for Water Quality Index Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2227-2245, May.
    7. Sinan Jasim Hadi & Mustafa Tombul, 2018. "Streamflow Forecasting Using Four Wavelet Transformation Combinations Approaches with Data-Driven Models: A Comparative Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4661-4679, November.
    8. Bhuvanamitra Sulugodu & Paresh Chandra Deka, 2019. "Evaluating the Performance of CHIRPS Satellite Rainfall Data for Streamflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3913-3927, September.
    9. Saeid Mehdizadeh & Ali Kozekalani Sales, 2018. "A Comparative Study of Autoregressive, Autoregressive Moving Average, Gene Expression Programming and Bayesian Networks for Estimating Monthly Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 3001-3022, July.
    10. Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.
    11. Zahra Dashti & Mohammad Nakhaei & Meysam Vadiati & Gholam Hossein Karami & Ozgur Kisi, 2023. "Estimation of Unconfined Aquifer Transmissivity Using a Comparative Study of Machine Learning Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(12), pages 4909-4931, September.
    12. David Robertson & Q. Wang, 2013. "Seasonal Forecasts of Unregulated Inflows into the Murray River, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2747-2769, June.
    13. Changsam Jeong & Ju-Young Shin & Taesoon Kim & Jun-Haneg Heo, 2012. "Monthly Precipitation Forecasting with a Neuro-Fuzzy Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4467-4483, December.
    14. Mohammad Dorofki & Ahmed Elshafie & Othman Jaafar & Othman Karim & Sharifah Abdullah, 2014. "A GIS-ANN-Based Approach for Enhancing the Effect of Slope in the Modified Green-Ampt Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 391-406, January.
    15. Muhammad Sulaiman & Ahmed El-Shafie & Othman Karim & Hassan Basri, 2011. "Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2525-2541, August.
    16. S. Aggarwal & Arun Goel & Vijay Singh, 2012. "Stage and Discharge Forecasting by SVM and ANN Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(13), pages 3705-3724, October.
    17. Guang Yang & Shenglian Guo & Pan Liu & Xiaofeng Liu & Jiabo Yin, 2020. "Heuristic Input Variable Selection in Multi-Objective Reservoir Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 617-636, January.
    18. Akram Rahbar & Ali Mirarabi & Mohammad Nakhaei & Mahdi Talkhabi & Maryam Jamali, 2022. "A Comparative Analysis of Data-Driven Models (SVR, ANFIS, and ANNs) for Daily Karst Spring Discharge Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 589-609, January.
    19. Mohammed Seyam & Faridah Othman & Ahmed El-Shafie, 2017. "RBFNN Versus Empirical Models for Lag Time Prediction in Tropical Humid Rivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 187-204, January.
    20. Saeideh Samani & Meysam Vadiati & Farahnaz Azizi & Efat Zamani & Ozgur Kisi, 2022. "Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3627-3647, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:11:d:10.1007_s11269-016-1397-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.