IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i11p2271-2287.html
   My bibliography  Save this article

Hydrological Modeling of Snow Accumulation and Melting on River Basin Scale

Author

Listed:
  • H. Zeinivand
  • F. Smedt

Abstract

Snowmelt is of importance for many aspects of hydrology, including water supply, erosion and flood control. In this study, snow accumulation and melt are modeled using a distributed hydrological model with two different snowmelt simulation modules. The model is applied for simulating river discharge in the Latyan dam watershed, in the southern part of central Alborz mountain range, Iran. The data consists of 3 years of observed daily precipitation, air temperature, potential evaporation, windspeed and discharge. The discharge data is used for model calibration. When using the temperature index method for snowmelt three parameters need to be calibrated, while for the energy balance approach all parameters are preset and not optimized. The model performance is satisfactory for both methods with efficiencies of more than 80%. In order to show the performance of the model, two interesting snow accumulation and melt periods are discussed in detail. This study shows that the model has great potentiality to simulate the impact of snow accumulation and melt on the hydrological behavior of a river basin. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • H. Zeinivand & F. Smedt, 2009. "Hydrological Modeling of Snow Accumulation and Melting on River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2271-2287, September.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:11:p:2271-2287
    DOI: 10.1007/s11269-008-9381-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-008-9381-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-008-9381-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Bahremand & F. Smedt & J. Corluy & Y. Liu & J. Poorova & L. Velcicka & E. Kunikova, 2007. "WetSpa Model Application for Assessing Reforestation Impacts on Floods in Margecany–Hornad Watershed, Slovakia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1373-1391, August.
    2. Y. Liu & F. Smedt, 2005. "Flood Modeling for Complex Terrain Using GIS and Remote Sensed Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 605-624, October.
    3. A. Bahremand & F. Smedt, 2008. "Distributed Hydrological Modeling and Sensitivity Analysis in Torysa Watershed, Slovakia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(3), pages 393-408, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Arsenault & Marco Latraverse & Thierry Duchesne, 2016. "An Efficient Method to Correct Under-Dispersion in Ensemble Streamflow Prediction of Inflow Volumes for Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4363-4380, September.
    2. Omid Rahmati & Ali Haghizadeh & Stefanos Stefanidis, 2016. "Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1131-1150, February.
    3. Anand Verdhen & Bhagu Chahar & Om Sharma, 2014. "Snowmelt Modelling Approaches in Watershed Models: Computation and Comparison of Efficiencies under Varying Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3439-3453, September.
    4. Jing Yang & Yongbo Liu & Wanhong Yang & Yaning Chen, 2012. "Multi-Objective Sensitivity Analysis of a Fully Distributed Hydrologic Model WetSpa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 109-128, January.
    5. Erica Gaddis & Alexey Voinov, 2010. "Spatially Explicit Modeling of Land Use Specific Phosphorus Transport Pathways to Improve TMDL Load Estimates and Implementation Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1621-1644, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdolreza Bahremand & Florimond Smedt, 2010. "Predictive Analysis and Simulation Uncertainty of a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2869-2880, September.
    2. Jing Yang & Yongbo Liu & Wanhong Yang & Yaning Chen, 2012. "Multi-Objective Sensitivity Analysis of a Fully Distributed Hydrologic Model WetSpa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 109-128, January.
    3. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    4. Julia Hall & Conor Murphy, 2010. "Vulnerability Analysis of Future Public Water Supply Under Changing Climate Conditions: A Study of the Moy Catchment, Western Ireland," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3527-3545, October.
    5. Mohsen Tavakoli & Florimond De Smedt & Thomas Vansteenkiste & Patrick Willems, 2014. "Impact of climate change and urban development on extreme flows in the Grote Nete watershed, Belgium," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2127-2142, April.
    6. Vesna Đukić & Zoran Radić, 2016. "Sensitivity Analysis of a Physically Based Distributed Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1669-1684, March.
    7. Konstantinos X. Soulis & Emmanouil Psomiadis & Paraskevi Londra & Dimitris Skuras, 2020. "A New Model-Based Approach for the Evaluation of the Net Contribution of the European Union Rural Development Program to the Reduction of Water Abstractions in Agriculture," Sustainability, MDPI, vol. 12(17), pages 1-25, September.
    8. Bahram Saghafian & Hassan Farazjoo & Babak Bozorgy & Farhad Yazdandoost, 2008. "Flood Intensification due to Changes in Land Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1051-1067, August.
    9. Fabrizio Ravagnani & Alberto Pellegrinelli & Marco Franchini, 2009. "Estimation of Urban Impervious Fraction from Satellite Images and Its Impact on Peak Discharge Entering a Storm Sewer System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1893-1915, August.
    10. Vesna Đukić & Zoran Radić, 2016. "Sensitivity Analysis of a Physically Based Distributed Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1669-1684, March.
    11. Shuang Liu & Rui Liu & Nengzhi Tan, 2021. "A Spatial Improved-kNN-Based Flood Inundation Risk Framework for Urban Tourism under Two Rainfall Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    12. Omid Rahmati & Ali Haghizadeh & Stefanos Stefanidis, 2016. "Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1131-1150, February.
    13. Sumit Das & Gianvito Scaringi, 2021. "River flooding in a changing climate: rainfall-discharge trends, controlling factors, and susceptibility mapping for the Mahi catchment, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2439-2459, December.
    14. Chandra Sharma & Mukund Behera & Atmaram Mishra & Sudhindra Panda, 2011. "Assessing Flood Induced Land-Cover Changes Using Remote Sensing and Fuzzy Approach in Eastern Gujarat (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3219-3246, October.
    15. Achraf Melki & Habib Abida, 2020. "Impact of climatic variation on infiltration rate under an arid climate: case of Northern Gafsa Watershed, Tunisia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7727-7742, December.
    16. Yan Liu & Ting Zhang & Aiqing Kang & Jianzhu Li & Xiaohui Lei, 2021. "Research on Runoff Simulations Using Deep-Learning Methods," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    17. Oscar Corvacho-Ganahín & Mauricio González-Pacheco & Marcos Francos & Filipe Carvalho, 2023. "Evaluation of potential flood hazard through spatial zoning in Acha–Arica, northern Chile, integrating GIS, multi-criteria analysis and two-dimensional numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 755-783, August.
    18. Mahtab Forootan Danesh & Mohammad Reza Dahmardeh Ghaleno & Ehsan Alvandi & Sarita Gajbhiye Meshram & Ercan Kahya, 2020. "RETRACTED ARTICLE: Predicting the Impacts of Optimal Residential Development Scenario on Soil Loss Caused by Surface Runoff and Raindrops Using TOPSIS and WetSpa Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3257-3277, August.
    19. Mazen M. Abu-Abdullah & Ahmed M. Youssef & Norbert H. Maerz & Emad Abu-AlFadail & Hasan M. Al-Harbi & Nasser S. Al-Saadi, 2020. "A Flood Risk Management Program of Wadi Baysh Dam on the Downstream Area: An Integration of Hydrologic and Hydraulic Models, Jizan Region, KSA," Sustainability, MDPI, vol. 12(3), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:11:p:2271-2287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.