IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i8d10.1007_s10668-019-00544-9.html
   My bibliography  Save this article

Impact of climatic variation on infiltration rate under an arid climate: case of Northern Gafsa Watershed, Tunisia

Author

Listed:
  • Achraf Melki

    (University of Sfax)

  • Habib Abida

    (University of Sfax)

Abstract

The assessment of the impact of climate change on hydrological systems and their water resources, whether at regional or global scale, presents a major challenge in the twenty-first century. Indeed, scientists need to present response elements regarding this climatic variation in order to establish adequate strategies for water resources management. In this context, this study examines the temporal variation of rainfall and its impact on infiltration in the Northern Gafsa Watershed (southwestern Tunisia), characterized by an arid climate. The analysis of the temporal variation of rainfall is based on daily data recorded over the period (1960–2015) at 6 rainfall stations, regularly spread over the study basin. The different components of the hydrological cycle (initial abstraction, infiltration, actual evapotranspiration and runoff) are estimated by WetSpass-M model. The analysis of the daily rainfall data showed that more than half of the daily rainfall contributions are less than 5 mm/day. On the other hand, the results of the WetSpass-M model show that the minimum infiltration rates exceed 40 mm/year, while the maximum actual evapotranspiration does not exceed 108 mm/year despite arid conditions. The maximum runoff and interception rates are 80.1 and 16.9 mm/year successively. Regression models relating monthly infiltration to rainfall and infiltration of previous months were developed. Both calibration and validation phases resulted in reasonably good agreements between infiltration rates estimated by the proposed regression equations and WetSpass-M model.

Suggested Citation

  • Achraf Melki & Habib Abida, 2020. "Impact of climatic variation on infiltration rate under an arid climate: case of Northern Gafsa Watershed, Tunisia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7727-7742, December.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:8:d:10.1007_s10668-019-00544-9
    DOI: 10.1007/s10668-019-00544-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00544-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00544-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Bahremand & F. Smedt & J. Corluy & Y. Liu & J. Poorova & L. Velcicka & E. Kunikova, 2007. "WetSpa Model Application for Assessing Reforestation Impacts on Floods in Margecany–Hornad Watershed, Slovakia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(8), pages 1373-1391, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Zeinivand & F. Smedt, 2009. "Hydrological Modeling of Snow Accumulation and Melting on River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2271-2287, September.
    2. Mohsen Tavakoli & Florimond De Smedt & Thomas Vansteenkiste & Patrick Willems, 2014. "Impact of climate change and urban development on extreme flows in the Grote Nete watershed, Belgium," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 2127-2142, April.
    3. Omid Rahmati & Ali Haghizadeh & Stefanos Stefanidis, 2016. "Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed Prioritization; Gorganrood River Basin, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1131-1150, February.
    4. Abdolreza Bahremand & Florimond Smedt, 2010. "Predictive Analysis and Simulation Uncertainty of a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2869-2880, September.
    5. Jing Yang & Yongbo Liu & Wanhong Yang & Yaning Chen, 2012. "Multi-Objective Sensitivity Analysis of a Fully Distributed Hydrologic Model WetSpa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 109-128, January.
    6. Yan Liu & Ting Zhang & Aiqing Kang & Jianzhu Li & Xiaohui Lei, 2021. "Research on Runoff Simulations Using Deep-Learning Methods," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
    7. Mahtab Forootan Danesh & Mohammad Reza Dahmardeh Ghaleno & Ehsan Alvandi & Sarita Gajbhiye Meshram & Ercan Kahya, 2020. "RETRACTED ARTICLE: Predicting the Impacts of Optimal Residential Development Scenario on Soil Loss Caused by Surface Runoff and Raindrops Using TOPSIS and WetSpa Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3257-3277, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:8:d:10.1007_s10668-019-00544-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.