IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v19y2005i5p605-624.html
   My bibliography  Save this article

Flood Modeling for Complex Terrain Using GIS and Remote Sensed Information

Author

Listed:
  • Y. Liu
  • F. Smedt

Abstract

A spatially distributed hydrological model WetSpa (Water and Energy Transfer between Soil, Plants and Atmosphere) working on an hourly time scale is presented in this paper. The model combines elevation, soil and land use data, and predicts flood hydrograph and the spatial distribution of hydrological characteristics in a watershed. The model is tested on a small catchment in Belgium for which topography and soil data are available in GIS form, while the land use and soil cover is obtained from remote sensed images. The resulting calculated discharges compare favorably with the field measurements. Next a 102-year series of measured hourly precipitation data is processed with the model and the resulting hydrographs are analyzed statistically to determine the characteristics of extreme floods. Finally, the simulated extreme peak discharges are compared to the results calculated with design storms. Comparison of the two methods shows that the model is capable to predict both normal and extreme floods. Since the model accounts for spatially distributed hydrological and geophysical characteristics of the catchment, it is suitable for simulating hydrological processes in a complex terrain and for predicting the influence of changes in land use on the hydrological behavior of a river basin. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Y. Liu & F. Smedt, 2005. "Flood Modeling for Complex Terrain Using GIS and Remote Sensed Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 605-624, October.
  • Handle: RePEc:spr:waterr:v:19:y:2005:i:5:p:605-624
    DOI: 10.1007/s11269-005-6808-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-005-6808-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-005-6808-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahram Saghafian & Hassan Farazjoo & Babak Bozorgy & Farhad Yazdandoost, 2008. "Flood Intensification due to Changes in Land Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1051-1067, August.
    2. Chandra Sharma & Mukund Behera & Atmaram Mishra & Sudhindra Panda, 2011. "Assessing Flood Induced Land-Cover Changes Using Remote Sensing and Fuzzy Approach in Eastern Gujarat (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3219-3246, October.
    3. H. Zeinivand & F. Smedt, 2009. "Hydrological Modeling of Snow Accumulation and Melting on River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2271-2287, September.
    4. Oscar Corvacho-Ganahín & Mauricio González-Pacheco & Marcos Francos & Filipe Carvalho, 2023. "Evaluation of potential flood hazard through spatial zoning in Acha–Arica, northern Chile, integrating GIS, multi-criteria analysis and two-dimensional numerical simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 755-783, August.
    5. Fabrizio Ravagnani & Alberto Pellegrinelli & Marco Franchini, 2009. "Estimation of Urban Impervious Fraction from Satellite Images and Its Impact on Peak Discharge Entering a Storm Sewer System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1893-1915, August.
    6. Sumit Das & Gianvito Scaringi, 2021. "River flooding in a changing climate: rainfall-discharge trends, controlling factors, and susceptibility mapping for the Mahi catchment, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2439-2459, December.
    7. Konstantinos X. Soulis & Emmanouil Psomiadis & Paraskevi Londra & Dimitris Skuras, 2020. "A New Model-Based Approach for the Evaluation of the Net Contribution of the European Union Rural Development Program to the Reduction of Water Abstractions in Agriculture," Sustainability, MDPI, vol. 12(17), pages 1-25, September.
    8. Mazen M. Abu-Abdullah & Ahmed M. Youssef & Norbert H. Maerz & Emad Abu-AlFadail & Hasan M. Al-Harbi & Nasser S. Al-Saadi, 2020. "A Flood Risk Management Program of Wadi Baysh Dam on the Downstream Area: An Integration of Hydrologic and Hydraulic Models, Jizan Region, KSA," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    9. Shuang Liu & Rui Liu & Nengzhi Tan, 2021. "A Spatial Improved-kNN-Based Flood Inundation Risk Framework for Urban Tourism under Two Rainfall Scenarios," Sustainability, MDPI, vol. 13(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:19:y:2005:i:5:p:605-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.