IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v109y2021i3d10.1007_s11069-021-04927-y.html
   My bibliography  Save this article

River flooding in a changing climate: rainfall-discharge trends, controlling factors, and susceptibility mapping for the Mahi catchment, Western India

Author

Listed:
  • Sumit Das

    (Savitribai Phule Pune University)

  • Gianvito Scaringi

    (Charles University)

Abstract

The Mahi—one of the major rivers in Western India—is subject to frequent major flooding, which severely affects the local economy and infrastructure. Little has been done, however, to assess the flood patterns and severity along its course. Here, the Mann–Kendall and Pettitt tests are used to identify long-term trends of precipitation and peak streamflow at multiple locations in the catchment. Then, flood susceptibility mapping is performed by the analytical hierarchy process, accounting for 14 geomorphic, hydraulic, and geologic factors. The analyses suggest a decline in total precipitation and peak flow discharges at most locations, consistently with the general climatic trend of the area, featuring a weakening summer monsoon. Nonetheless, a significant portion of the catchment area remains highly susceptible to flooding, with stream powers capable of mobilizing boulders up to 1 m in size in extraordinary floods. These results can support the work of engineers and policymakers dealing with floods in the study area, but the proposed methodology can also be applied to other fluvial catchments to evaluate the role of climate trends in modulating flood susceptibility.

Suggested Citation

  • Sumit Das & Gianvito Scaringi, 2021. "River flooding in a changing climate: rainfall-discharge trends, controlling factors, and susceptibility mapping for the Mahi catchment, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2439-2459, December.
  • Handle: RePEc:spr:nathaz:v:109:y:2021:i:3:d:10.1007_s11069-021-04927-y
    DOI: 10.1007/s11069-021-04927-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04927-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04927-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaizhong Li & Shaohong Wu & Erfu Dai & Zhongchun Xu, 2012. "Flood loss analysis and quantitative risk assessment in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 737-760, September.
    2. Y. Liu & F. Smedt, 2005. "Flood Modeling for Complex Terrain Using GIS and Remote Sensed Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(5), pages 605-624, October.
    3. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    4. T. V. Padma, 2018. "Mining and dams exacerbated devastating Kerala floods," Nature, Nature, vol. 561(7721), pages 13-14, September.
    5. Bingshun He & Xianlong Huang & Meihong Ma & Qingrui Chang & Yong Tu & Qing Li & Ke Zhang & Yang Hong, 2018. "Analysis of flash flood disaster characteristics in China from 2011 to 2015," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 407-420, January.
    6. Vishwas Kale, 2003. "Geomorphic Effects of Monsoon Floods on Indian Rivers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 28(1), pages 65-84, January.
    7. S. Pfahl & P. A. O’Gorman & E. M. Fischer, 2017. "Understanding the regional pattern of projected future changes in extreme precipitation," Nature Climate Change, Nature, vol. 7(6), pages 423-427, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thuy Linh Nguyen & Chisato Asahi & Thi An Tran & Ngoc Hanh Le, 2022. "Indicator-based approach for flood vulnerability assessment in ancient heritage city of Hoi An, Central Region of Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2357-2385, November.
    2. Swati Maurya & Prashant K. Srivastava & Lu Zhuo & Aradhana Yaduvanshi & R. K. Mall, 2023. "Future Climate Change Impact on the Streamflow of Mahi River Basin Under Different General Circulation Model Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2675-2696, May.
    3. Fatemeh Rezaie & Mahdi Panahi & Sayed M. Bateni & Changhyun Jun & Christopher M. U. Neale & Saro Lee, 2022. "Novel hybrid models by coupling support vector regression (SVR) with meta-heuristic algorithms (WOA and GWO) for flood susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1247-1283, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrnoosh Taherizadeh & Arman Niknam & Thong Nguyen-Huy & Gábor Mezősi & Reza Sarli, 2023. "Flash flood-risk areas zoning using integration of decision-making trial and evaluation laboratory, GIS-based analytic network process and satellite-derived information," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2309-2335, September.
    2. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    3. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    4. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    5. Alfredas Račkauskas & Martin Wendler, 2020. "Convergence of U-processes in Hölder spaces with application to robust detection of a changed segment," Statistical Papers, Springer, vol. 61(4), pages 1409-1435, August.
    6. Catherine Araujo Bonjean & Alioune N’diaye & Olivier Santoni, 2019. "Who benefits from the return of the rains? The case of the Ferlo breeders in Senegal [A qui profite le retour des pluies ? Le cas des éleveurs du Ferlo]," CERDI Working papers halshs-02419601, HAL.
    7. Zijun Qie & Lili Rong, 2017. "An integrated relative risk assessment model for urban disaster loss in view of disaster system theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 165-190, August.
    8. Yuanfang Chai & Yao Yue & Louise J. Slater & Jiabo Yin & Alistair G. L. Borthwick & Tiexi Chen & Guojie Wang, 2022. "Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Sanghyuk Yoo & Sangyong Jeon & Seunghwan Jeong & Heesoo Lee & Hosun Ryou & Taehyun Park & Yeonji Choi & Kyongjoo Oh, 2021. "Prediction of the Change Points in Stock Markets Using DAE-LSTM," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    10. Uilson Ricardo Venâncio Aires & Demetrius David Silva & Michel Castro Moreira & Carlos Antônio Alvares Soares Ribeiro & Celso Bandeira de Melo Ribeiro, 2020. "The Use of the Normalized Difference Vegetation Index to Analyze the Influence of Vegetation Cover Changes on the Streamflow in the Manhuaçu River Basin, Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1933-1949, April.
    11. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    12. Dario Camuffo & Antonio della Valle & Francesca Becherini & Valeria Zanini, 2020. "Three centuries of daily precipitation in Padua, Italy, 1713–2018: history, relocations, gaps, homogeneity and raw data," Climatic Change, Springer, vol. 162(2), pages 923-942, September.
    13. Christian L. E. Franzke & Herminia Torelló i Sentelles, 2020. "Risk of extreme high fatalities due to weather and climate hazards and its connection to large-scale climate variability," Climatic Change, Springer, vol. 162(2), pages 507-525, September.
    14. H. Zeinivand & F. Smedt, 2009. "Hydrological Modeling of Snow Accumulation and Melting on River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2271-2287, September.
    15. Ijaz Ahmad & Li Wang & Faisal Ali & Fan Zhang, 2022. "Spatiotemporal Patterns of Extreme Precipitation Events over Jhelum River Basin," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    16. Deliang Pang & Xinxin Zhang & Jian Zhang, 2024. "A Study to Assess the Performance of Disaster Management During the 2017 Yongji County Flood in China," Public Organization Review, Springer, vol. 24(3), pages 775-790, September.
    17. Tweneboah Senzu, Emmanuel, 2020. "Modern currency exchange rate behaviour and proposed trend-like forecasting model," MPRA Paper 99933, University Library of Munich, Germany.
    18. Alam, Mohammad Faiz & Pavelic, Paul, 2020. "Underground Transfer of Floods for Irrigation (UTFI): exploring potential at the global scale," IWMI Research Reports H050008, International Water Management Institute.
    19. Moldir Rakhimova & Tie Liu & Sanim Bissenbayeva & Yerbolat Mukanov & Khusen Sh. Gafforov & Zhuldyzay Bekpergenova & Aminjon Gulakhmadov, 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    20. Vishnu Prasad Pandey & Dibesh Shrestha & Mina Adhikari & Shristi Shakya, 2020. "Streamflow Alterations, Attributions, and Implications in Extended East Rapti Watershed, Central-Southern Nepal," Sustainability, MDPI, vol. 12(9), pages 1-30, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:109:y:2021:i:3:d:10.1007_s11069-021-04927-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.