IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i7p1426-1435.html
   My bibliography  Save this article

Generalized Inverse Gamma Distribution and its Application in Reliability

Author

Listed:
  • M. E. Mead

Abstract

In this article, we introduce a new reliability model of inverse gamma distribution referred to as the generalized inverse gamma distribution (GIG). A generalization of inverse gamma distribution is defined based on the exact form of generalized gamma function of Kobayashi (1991). This function is useful in many problems of diffraction theory and corrosion problems in new machines. The new distribution has a number of lifetime special sub-models. For this model, some of its statistical properties are studied. The method of maximum likelihood is used for estimating the model parameters and the observed information matrix is derived. We also demonstrate the usefulness of this distribution on a real data set.

Suggested Citation

  • M. E. Mead, 2015. "Generalized Inverse Gamma Distribution and its Application in Reliability," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(7), pages 1426-1435, April.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:7:p:1426-1435
    DOI: 10.1080/03610926.2013.768667
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.768667
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.768667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanaa Al-Marzouki & Farrukh Jamal & Christophe Chesneau & Mohammed Elgarhy, 2019. "Type II Topp Leone Power Lomax Distribution with Applications," Mathematics, MDPI, vol. 8(1), pages 1-26, December.
    2. Mashail M. AL Sobhi, 2020. "The Inverse-Power Logistic-Exponential Distribution: Properties, Estimation Methods, and Application to Insurance Data," Mathematics, MDPI, vol. 8(11), pages 1-15, November.
    3. Emanuele Taufer & Flavio Santi & Pier Luigi Novi Inverardi & Giuseppe Espa & Maria Michela Dickson, 2020. "Extreme Value Index Estimation by Means of an Inequality Curve," Mathematics, MDPI, vol. 8(10), pages 1-17, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:7:p:1426-1435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.