Measuring the evolving stage of temporal distribution of research topic keyword in scientific literature by research heat curve
Author
Abstract
Suggested Citation
DOI: 10.1007/s11192-024-04937-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Staša Milojević & Cassidy R. Sugimoto & Erjia Yan & Ying Ding, 2011. "The cognitive structure of Library and Information Science: Analysis of article title words," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(10), pages 1933-1953, October.
- Lin, Yiling & Evans, James A. & Wu, Lingfei, 2022. "New directions in science emerge from disconnection and discord," Journal of Informetrics, Elsevier, vol. 16(1).
- Wang, Jian & Veugelers, Reinhilde & Stephan, Paula, 2017.
"Bias against novelty in science: A cautionary tale for users of bibliometric indicators,"
Research Policy, Elsevier, vol. 46(8), pages 1416-1436.
- Jian Wang & Reinhilde Veugelers & Paula Stephan, 2015. "Bias against novelty in science: A cautionary tale for users of bibliometric indicators," Working Papers of Department of Management, Strategy and Innovation, Leuven 520305, KU Leuven, Faculty of Economics and Business (FEB), Department of Management, Strategy and Innovation, Leuven.
- Veugelers, Reinhilde & wang, jian & Stephan, Paula, 2016. "Bias against Novelty in Science: A Cautionary Tale for Users of Bibliometric Indicators," CEPR Discussion Papers 11228, C.E.P.R. Discussion Papers.
- Jian Wang & Reinhilde Veugelers & Paula Stephan, 2016. "Bias against Novelty in Science: A Cautionary Tale for Users of Bibliometric Indicators," NBER Working Papers 22180, National Bureau of Economic Research, Inc.
- Lutz Bornmann & Robin Haunschild & Rüdiger Mutz, 2021. "Growth rates of modern science: a latent piecewise growth curve approach to model publication numbers from established and new literature databases," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
- Hong Wu & Huifang Yi & Chang Li, 2021. "An integrated approach for detecting and quantifying the topic evolutions of patent technology: a case study on graphene field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6301-6321, August.
- Seyyed Reza Taher Harikandeh & Sadegh Aliakbary & Soroush Taheri, 2023. "An embedding approach for analyzing the evolution of research topics with a case study on computer science subdomains," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1567-1582, March.
- Dotsika, Fefie & Watkins, Andrew, 2017. "Identifying potentially disruptive trends by means of keyword network analysis," Technological Forecasting and Social Change, Elsevier, vol. 119(C), pages 114-127.
- Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015.
"What is an emerging technology?,"
Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
- Daniele Rotolo & Diana Hicks & Ben Martin, 2015. "What is an emerging technology?," SPRU Working Paper Series 2015-06, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Samira Ranaei & Arho Suominen & Alan Porter & Stephen Carley, 2020. "Evaluating technological emergence using text analytics: two case technologies and three approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 215-247, January.
- Kun Dong & Haiyun Xu & Rui Luo & Ling Wei & Shu Fang, 2018. "An integrated method for interdisciplinary topic identification and prediction: a case study on information science and library science," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 849-868, May.
- Ma, Tingting & Zhou, Xiao & Liu, Jia & Lou, Zhenkai & Hua, Zhaoting & Wang, Ruitao, 2021. "Combining topic modeling and SAO semantic analysis to identify technological opportunities of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
- Chen, Baitong & Tsutsui, Satoshi & Ding, Ying & Ma, Feicheng, 2017. "Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 11(4), pages 1175-1189.
- Lingfei Wu & Dashun Wang & James A. Evans, 2019. "Large teams develop and small teams disrupt science and technology," Nature, Nature, vol. 566(7744), pages 378-382, February.
- Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.
- Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
- Staša Milojević & Cassidy R. Sugimoto & Erjia Yan & Ying Ding, 2011. "The cognitive structure of Library and Information Science: Analysis of article title words," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 1933-1953, October.
- Haiyun Xu & Ting Guo & Zenghui Yue & Lijie Ru & Shu Fang, 2016. "Interdisciplinary topics of information science: a study based on the terms interdisciplinarity index series," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 583-601, February.
- Sotaro Shibayama & Jian Wang, 2020. "Measuring originality in science," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 409-427, January.
- Kumar, Vivek & Srivastava, Arpita, 2022. "Trends in the thematic landscape of corporate social responsibility research: A structural topic modeling approach," Journal of Business Research, Elsevier, vol. 150(C), pages 26-37.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chengzhi Zhang & Philipp Mayr & Wei Lu & Yi Zhang, 2024. "An editorial note on extraction and evaluation of knowledge entities from scientific documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 7169-7174, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hou, Jianhua & Wang, Dongyi & Li, Jing, 2022. "A new method for measuring the originality of academic articles based on knowledge units in semantic networks," Journal of Informetrics, Elsevier, vol. 16(3).
- Yosuke Miyata & Emi Ishita & Fang Yang & Michimasa Yamamoto & Azusa Iwase & Keiko Kurata, 2020. "Knowledge structure transition in library and information science: topic modeling and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 665-687, October.
- Wang, Cheng-Jun & Yan, Lihan & Cui, Haochuan, 2023. "Unpacking the essential tension of knowledge recombination: Analyzing the impact of knowledge spanning on citation impact and disruptive innovation," Journal of Informetrics, Elsevier, vol. 17(4).
- Bornmann, Lutz & Haunschild, Robin, 2022. "Empirical analysis of recent temporal dynamics of research fields: Annual publications in chemistry and related areas as an example," Journal of Informetrics, Elsevier, vol. 16(2).
- S. Lozano & L. Calzada-Infante & B. Adenso-Díaz & S. García, 2019. "Complex network analysis of keywords co-occurrence in the recent efficiency analysis literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 609-629, August.
- Keye Wu & Ziyue Xie & Jia Tina Du, 2024. "Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.
- Abhijit Thakuria & Dipen Deka, 2024. "A decadal study on identifying latent topics and research trends in open access LIS journals using topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3841-3869, July.
- Yuefen Wang & Lipeng Fan & Lei Wu, 2024. "A validation test of the Uzzi et al. novelty measure of innovation and applications to collaboration patterns between institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4379-4394, July.
- Wenjie Wei & Hongxu Liu & Zhuanlan Sun, 2022. "Cover papers of top journals are reliable source for emerging topics detection: a machine learning based prediction framework," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4315-4333, August.
- Yu-Wei Chang, 2018. "Examining interdisciplinarity of library and information science (LIS) based on LIS articles contributed by non-LIS authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1589-1613, September.
- Libo Sheng & Dongqing Lyu & Xuanmin Ruan & Hongquan Shen & Ying Cheng, 2023. "The association between prior knowledge and the disruption of an article," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4731-4751, August.
- Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
- Wu, Lingfei & Kittur, Aniket & Youn, Hyejin & Milojević, Staša & Leahey, Erin & Fiore, Stephen M. & Ahn, Yong-Yeol, 2022. "Metrics and mechanisms: Measuring the unmeasurable in the science of science," Journal of Informetrics, Elsevier, vol. 16(2).
- Zhentao Liang & Jin Mao & Gang Li, 2023. "Bias against scientific novelty: A prepublication perspective," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 99-114, January.
- Yue Wang & Ning Li & Bin Zhang & Qian Huang & Jian Wu & Yang Wang, 2023. "The effect of structural holes on producing novel and disruptive research in physics," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1801-1823, March.
- Li, Meiling & Wang, Yang & Du, Haifeng & Bai, Aruhan, 2024. "Motivating innovation: The impact of prestigious talent funding on junior scientists," Research Policy, Elsevier, vol. 53(9).
- Lin, Yiling & Evans, James A. & Wu, Lingfei, 2022. "New directions in science emerge from disconnection and discord," Journal of Informetrics, Elsevier, vol. 16(1).
- Deichmann, Dirk & Moser, Christine & Birkholz, Julie M. & Nerghes, Adina & Groenewegen, Peter & Wang, Shenghui, 2020. "Ideas with impact: How connectivity shapes idea diffusion," Research Policy, Elsevier, vol. 49(1).
- Zhongyi Wang & Keying Wang & Jiyue Liu & Jing Huang & Haihua Chen, 2022. "Measuring the innovation of method knowledge elements in scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2803-2827, May.
- Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
More about this item
Keywords
Research heat curve function; Evolving stage; Keyword temporal distribution; Curve shape matching; Differential equation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:11:d:10.1007_s11192-024-04937-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.