IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v122y2020i1d10.1007_s11192-019-03275-w.html
   My bibliography  Save this article

Evaluating technological emergence using text analytics: two case technologies and three approaches

Author

Listed:
  • Samira Ranaei

    (Lappeenranta University of Technology)

  • Arho Suominen

    (VTT Technical Research Centre of Finland)

  • Alan Porter

    (Search Technology, Inc.
    School of Public Policy, Georgia Tech)

  • Stephen Carley

    (Search Technology, Inc.)

Abstract

Scientometric methods have long been used to identify technological trajectories, but we have seldom seen reproducible methods that allow for the identification of a technological emergence in a set of documents. This study evaluates the use of three different reproducible approaches for identifying the emergence of technological novelties in scientific publications. The selected approaches are term counting technique, the emergence score (EScore) and Latent Dirichlet Allocation (LDA). We found that the methods provide somewhat distinct perspectives on technological. The term count based method identifies detailed emergence patterns. EScore is a complex bibliometric indicator that provides a holistic view of emergence by considering several parameters, namely term frequency, size, and origin of the research community. LDA traces emergence at the thematic level and provides insights on the linkages between emerging research topics. The results suggest that term counting produces results practical for operational purposes, while LDA offers insight at a strategic level.

Suggested Citation

  • Samira Ranaei & Arho Suominen & Alan Porter & Stephen Carley, 2020. "Evaluating technological emergence using text analytics: two case technologies and three approaches," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 215-247, January.
  • Handle: RePEc:spr:scient:v:122:y:2020:i:1:d:10.1007_s11192-019-03275-w
    DOI: 10.1007/s11192-019-03275-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03275-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03275-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    2. Lee, Changyong & Kang, Bokyoung & Shin, Juneseuk, 2015. "Novelty-focused patent mapping for technology opportunity analysis," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 355-365.
    3. Venugopalan, Subhashini & Rai, Varun, 2015. "Topic based classification and pattern identification in patents," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 236-250.
    4. Xiaomu Wang & He Tian & Mohammad Ali Mohammad & Cheng Li & Can Wu & Yi Yang & Tian-Ling Ren, 2015. "A spectrally tunable all-graphene-based flexible field-effect light-emitting device," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    5. Chyi-Kwei Yau & Alan Porter & Nils Newman & Arho Suominen, 2014. "Clustering scientific documents with topic modeling," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 767-786, September.
    6. Criscuolo, Paola & Verspagen, Bart, 2008. "Does it matter where patent citations come from? Inventor vs. examiner citations in European patents," Research Policy, Elsevier, vol. 37(10), pages 1892-1908, December.
    7. Alan L Porter & J David Roessner & Xiao-Yin Jin & Nils C Newman, 2002. "Measuring national ‘emerging technology’ capabilities," Science and Public Policy, Oxford University Press, vol. 29(3), pages 189-200, June.
    8. Kim, Jieun & Lee, Changyong, 2017. "Novelty-focused weak signal detection in futuristic data: Assessing the rarity and paradigm unrelatedness of signals," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 59-76.
    9. Gustafsson, Robin & Kuusi, Osmo & Meyer, Martin, 2015. "Examining open-endedness of expectations in emerging technological fields: The case of cellulosic ethanol," Technological Forecasting and Social Change, Elsevier, vol. 91(C), pages 179-193.
    10. Arho Suominen & Hannes Toivanen, 2016. "Map of science with topic modeling: Comparison of unsupervised learning and human-assigned subject classification," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(10), pages 2464-2476, October.
    11. Theresa Velden & Kevin W. Boyack & Jochen Gläser & Rob Koopman & Andrea Scharnhorst & Shenghui Wang, 2017. "Comparison of topic extraction approaches and their results," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 1169-1221, May.
    12. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    13. Kun Lu & Dietmar Wolfram, 2012. "Measuring author research relatedness: A comparison of word-based, topic-based, and author cocitation approaches," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(10), pages 1973-1986, October.
    14. Small, Henry & Boyack, Kevin W. & Klavans, Richard, 2014. "Identifying emerging topics in science and technology," Research Policy, Elsevier, vol. 43(8), pages 1450-1467.
    15. Ivana Roche & Dominique Besagni & Claire François & Marianne Hörlesberger & Edgar Schiebel, 2010. "Identification and characterisation of technological topics in the field of Molecular Biology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 663-676, March.
    16. Tom Magerman & Bart Looy & Xiaoyan Song, 2010. "Exploring the feasibility and accuracy of Latent Semantic Analysis based text mining techniques to detect similarity between patent documents and scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 289-306, February.
    17. Jan M. Gerken & Martin G. Moehrle, 2012. "A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 645-670, June.
    18. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
    19. Breitzman, Anthony & Thomas, Patrick, 2015. "The Emerging Clusters Model: A tool for identifying emerging technologies across multiple patent systems," Research Policy, Elsevier, vol. 44(1), pages 195-205.
    20. Stephen F. Carley & Nils C. Newman & Alan L. Porter & Jon G. Garner, 2018. "An indicator of technical emergence," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(1), pages 35-49, April.
    21. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    22. Kun Lu & Dietmar Wolfram, 2012. "Measuring author research relatedness: A comparison of word‐based, topic‐based, and author cocitation approaches," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(10), pages 1973-1986, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    2. Yujin Jeong & Hyejin Jang & Byungun Yoon, 2021. "Developing a risk-adaptive technology roadmap using a Bayesian network and topic modeling under deep uncertainty," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3697-3722, May.
    3. Chiarello, Filippo & Fantoni, Gualtiero & Hogarth, Terence & Giordano, Vito & Baltina, Liga & Spada, Irene, 2021. "Towards ESCO 4.0 – Is the European classification of skills in line with Industry 4.0? A text mining approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    4. Arash Hajikhani & Arho Suominen, 2022. "Mapping the sustainable development goals (SDGs) in science, technology and innovation: application of machine learning in SDG-oriented artefact detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6661-6693, November.
    5. Chiarello, Filippo & Giordano, Vito & Spada, Irene & Barandoni, Simone & Fantoni, Gualtiero, 2024. "Future applications of generative large language models: A data-driven case study on ChatGPT," Technovation, Elsevier, vol. 133(C).
    6. Woo, Seokkyun & Youtie, Jan & Ott, Ingrid & Scheu, Fenja, 2021. "Understanding the long-term emergence of autonomous vehicles technologies," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    7. Manuel A. Vázquez & Jorge Pereira-Delgado & Jesús Cid-Sueiro & Jerónimo Arenas-García, 2022. "Validation of scientific topic models using graph analysis and corpus metadata," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5441-5458, September.
    8. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    9. Amber Geurts & Ralph Gutknecht & Philine Warnke & Arjen Goetheer & Elna Schirrmeister & Babette Bakker & Svetlana Meissner, 2022. "New perspectives for data‐supported foresight: The hybrid AI‐expert approach," Futures & Foresight Science, John Wiley & Sons, vol. 4(1), March.
    10. Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2024. "The impact of ChatGPT on human skills: A quantitative study on twitter data," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    11. Li, Munan & Porter, Alan L. & Suominen, Arho & Burmaoglu, Serhat & Carley, Stephen, 2021. "An exploratory perspective to measure the emergence degree for a specific technology based on the philosophy of swarm intelligence," Technological Forecasting and Social Change, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Changyong & Kwon, Ohjin & Kim, Myeongjung & Kwon, Daeil, 2018. "Early identification of emerging technologies: A machine learning approach using multiple patent indicators," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 291-303.
    2. Kwon, Seokbeom & Liu, Xiaoyu & Porter, Alan L. & Youtie, Jan, 2019. "Research addressing emerging technological ideas has greater scientific impact," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    3. Xu, Shuo & Hao, Liyuan & Yang, Guancan & Lu, Kun & An, Xin, 2021. "A topic models based framework for detecting and forecasting emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    4. Puccetti, Giovanni & Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2023. "Technology identification from patent texts: A novel named entity recognition method," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
    5. Yuan Zhou & Heng Lin & Yufei Liu & Wei Ding, 2019. "A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 167-185, July.
    6. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    7. Righi, Riccardo & Samoili, Sofia & López Cobo, Montserrat & Vázquez-Prada Baillet, Miguel & Cardona, Melisande & De Prato, Giuditta, 2020. "The AI techno-economic complex System: Worldwide landscape, thematic subdomains and technological collaborations," Telecommunications Policy, Elsevier, vol. 44(6).
    8. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    9. Serhat Burmaoglu & Olivier Sartenaer & Alan Porter & Munan Li, 2019. "Analysing the theoretical roots of technology emergence: an evolutionary perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 97-118, April.
    10. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    11. Zhang, Yi & Wu, Mengjia & Miao, Wen & Huang, Lu & Lu, Jie, 2021. "Bi-layer network analytics: A methodology for characterizing emerging general-purpose technologies," Journal of Informetrics, Elsevier, vol. 15(4).
    12. Rotolo, Daniele & Hicks, Diana & Martin, Ben R., 2015. "What is an emerging technology?," Research Policy, Elsevier, vol. 44(10), pages 1827-1843.
    13. Wang, Zhinan & Porter, Alan L. & Wang, Xuefeng & Carley, Stephen, 2019. "An approach to identify emergent topics of technological convergence: A case study for 3D printing," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 723-732.
    14. Changyong Lee & Gyumin Lee, 2019. "Technology opportunity analysis based on recombinant search: patent landscape analysis for idea generation," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 603-632, November.
    15. Inchae Park & Byungun Yoon, 2018. "Identifying Promising Research Frontiers of Pattern Recognition through Bibliometric Analysis," Sustainability, MDPI, vol. 10(11), pages 1-32, November.
    16. Tingcan Ma & Ruinan Li & Guiyan Ou & Mingliang Yue, 2018. "Topic based research competitiveness evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 789-803, November.
    17. Seokbeom Kwon & Jan Youtie & Alan Porter & Nils Newman, 2024. "How does regulatory uncertainty shape the innovation process? Evidence from the case of nanomedicine," The Journal of Technology Transfer, Springer, vol. 49(1), pages 262-302, February.
    18. Lu, Kun & Yang, Guancan & Wang, Xue, 2022. "Topics emerged in the biomedical field and their characteristics," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    19. Lee, Changyong, 2021. "A review of data analytics in technological forecasting," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    20. Jeon, Daeseong & Lee, Junyoup & Ahn, Joon Mo & Lee, Changyong, 2023. "Measuring the novelty of scientific publications: A fastText and local outlier factor approach," Journal of Informetrics, Elsevier, vol. 17(4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:122:y:2020:i:1:d:10.1007_s11192-019-03275-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.