IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v11y2017i4p1175-1189.html
   My bibliography  Save this article

Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval

Author

Listed:
  • Chen, Baitong
  • Tsutsui, Satoshi
  • Ding, Ying
  • Ma, Feicheng

Abstract

Understanding topic evolution in a scientific domain is essential for capturing key domain developments and facilitating knowledge transfer within and across domains. Using a data set on information retrieval (IR) publications, this paper examines how research topics evolve by analyzing the topic trends, evolving dynamics, and semantic word shifts in the IR domain. Knowledge transfer between topics and the developing status of the major topics have been recognized, which are represented by the merging and splitting of local topics in different time periods. Results show that the evolution of a major topic usually follows a pattern from adjusting status to mature status, and sometimes with re-adjusting status in between the evolving process. Knowledge transfer happens both within a topic and among topics. Word migration via topic channels has been defined, and three migration types (non-migration, dual-migration, and multi-migration) are distinguished to facilitate better understanding of the topic evolution.

Suggested Citation

  • Chen, Baitong & Tsutsui, Satoshi & Ding, Ying & Ma, Feicheng, 2017. "Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 11(4), pages 1175-1189.
  • Handle: RePEc:eee:infome:v:11:y:2017:i:4:p:1175-1189
    DOI: 10.1016/j.joi.2017.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157717300536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2017.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Hongshu & Jin, Qianqian & Wang, Ximeng & Xiong, Fei, 2022. "Profiling academic-industrial collaborations in bibliometric-enhanced topic networks: A case study on digitalization research," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    2. WATANABE Ichiro & SHIMIZU Hiroshi, 2024. "Mainstream Formation and Competitive Dynamics in the Computer Graphics Industry: Topic modeling analysis of US patents," Discussion papers 24018, Research Institute of Economy, Trade and Industry (RIETI).
    3. Huixin Wang & Jing Xie & Shixian Luo & Duy Thong Ta & Qian Wang & Jiao Zhang & Daer Su & Katsunori Furuya, 2023. "Exploring the Interplay between Landscape Planning and Human Well-Being: A Scientometric Review," Land, MDPI, vol. 12(7), pages 1-24, June.
    4. Jung, Sukhwan & Segev, Aviv, 2022. "DAC: Descendant-aware clustering algorithm for network-based topic emergence prediction," Journal of Informetrics, Elsevier, vol. 16(3).
    5. Hengmin Zhu & Li Qian & Wang Qin & Jing Wei & Chao Shen, 2022. "Evolution analysis of online topics based on ‘word-topic’ coupling network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3767-3792, July.
    6. Yating Li & Ye Chen & Qiyu Wang, 2021. "Evolution and diffusion of information literacy topics," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4195-4224, May.
    7. Jian Xu & Yi Bu & Ying Ding & Sinan Yang & Hongli Zhang & Chen Yu & Lin Sun, 2018. "Understanding the formation of interdisciplinary research from the perspective of keyword evolution: a case study on joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 973-995, November.
    8. Xu, Shuo & Hao, Liyuan & An, Xin & Yang, Guancan & Wang, Feifei, 2019. "Emerging research topics detection with multiple machine learning models," Journal of Informetrics, Elsevier, vol. 13(4).
    9. Jian Xu & Ying Ding & Yi Bu & Shuqing Deng & Chen Yu & Yimin Zou & Andrew Madden, 2019. "Interdisciplinary scholarly communication: an exploratory study for the field of joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1597-1619, June.
    10. Qiang Gao & Xiao Huang & Ke Dong & Zhentao Liang & Jiang Wu, 2022. "Semantic-enhanced topic evolution analysis: a combination of the dynamic topic model and word2vec," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1543-1563, March.
    11. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2021. "The use of citation context to detect the evolution of research topics: a large-scale analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2971-2989, April.
    12. David Doloreux & Jose Gaviria de la Puerta & Iker Pastor-López & Igone Porto Gómez & Borja Sanz & Jon Mikel Zabala-Iturriagagoitia, 2019. "Territorial innovation models: to be or not to be, that’s the question," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(3), pages 1163-1191, September.
    13. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    14. Lukun Zheng & Yuhang Jiang, 2022. "Combining dissimilarity measures for quantifying changes in research fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3751-3765, July.
    15. Zhentao Liang & Jin Mao & Kun Lu & Gang Li, 2021. "Finding citations for PubMed: a large-scale comparison between five freely available bibliographic data sources," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9519-9542, December.
    16. Huichen Gao & Shijuan Wang, 2022. "The Intellectual Structure of Research on Rural-to-Urban Migrants: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(15), pages 1-19, August.
    17. Yosuke Miyata & Emi Ishita & Fang Yang & Michimasa Yamamoto & Azusa Iwase & Keiko Kurata, 2020. "Knowledge structure transition in library and information science: topic modeling and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 665-687, October.
    18. Baitong Chen & Ying Ding & Feicheng Ma, 2018. "Semantic word shifts in a scientific domain," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 211-226, October.
    19. David Chavalarias & Quentin Lobbé & Alexandre Delanoë, 2022. "Draw me Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 545-575, January.
    20. Seyyed Reza Taher Harikandeh & Sadegh Aliakbary & Soroush Taheri, 2023. "An embedding approach for analyzing the evolution of research topics with a case study on computer science subdomains," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1567-1582, March.
    21. Mauricio Marrone, 2020. "Application of entity linking to identify research fronts and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 357-379, January.
    22. Qian, Yue & Liu, Yu & Sheng, Quan Z., 2020. "Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence," Journal of Informetrics, Elsevier, vol. 14(3).
    23. Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
    24. Jung, Sukhwan & Yoon, Wan Chul, 2020. "An alternative topic model based on Common Interest Authors for topic evolution analysis," Journal of Informetrics, Elsevier, vol. 14(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:11:y:2017:i:4:p:1175-1189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.