Author
Listed:
- Keye Wu
(Nanjing University
Nanjing University)
- Ziyue Xie
(Nanjing University
Charles Sturt University)
- Jia Tina Du
(Charles Sturt University
University of South Australia)
Abstract
The role of scientific knowledge in advancing technology is widely recognized, but its impact in generating disruptive ideas and catalyzing technological change is less well known. To fill this gap, this study addresses a new research question about whether and how prior scientific knowledge contributes to technological disruptiveness. Specifically, our study focused on the pharmaceutical field, which has a frequent interaction between science and technology, and employed the patent-paper citations to explore the disruptive impact of science on technology. Drawing on the 1,883,593 granted patents in pharmaceuticals and their 1,546,960 cited papers prior to 2018, we found patents with scientific references appear to be more disruptive than those without scientific citations and such effect has gradually pronounced in recent decades, even though technological disruptiveness is generally declining over time. For each granted patent, we further developed three scientific characteristics including science intensity, science novelty and science recency and estimated their effects on technological disruptiveness. The regression analysis showed science intensity and science novelty both have an inverted U-shaped relationship with technological disruptiveness, suggesting intermediate-level novel scientific knowledge input can inspire the generation of disruptive ideas for pharmaceutical technological innovation. While science recency presents a negative association, underlying that recent scientific knowledge could offer advanced theoretical insights that may destabilize the existing technological trajectory. Moreover, collaboration is another important factor in enhancing the disruptive impact of science on technology. Our study contributes to the existing literature by introducing the disruptive impact of science on technology.
Suggested Citation
Keye Wu & Ziyue Xie & Jia Tina Du, 2024.
"Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field,"
Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.
Handle:
RePEc:spr:scient:v:129:y:2024:i:9:d:10.1007_s11192-024-05126-9
DOI: 10.1007/s11192-024-05126-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:9:d:10.1007_s11192-024-05126-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.