IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v125y2020i1d10.1007_s11192-020-03657-5.html
   My bibliography  Save this article

Knowledge structure transition in library and information science: topic modeling and visualization

Author

Listed:
  • Yosuke Miyata

    (Keio University)

  • Emi Ishita

    (Kyushu University)

  • Fang Yang
  • Michimasa Yamamoto
  • Azusa Iwase

    (Keio University)

  • Keiko Kurata

    (Keio University)

Abstract

The purpose of this research is to identify topics in library and information science (LIS) using latent Dirichlet allocation (LDA) and to visualize the knowledge structure of the field as consisting of specific topics and its transition from 2000–2002 to 2015–2017. The full text of 1648 research articles from five peer-reviewed representative LIS journals in these two periods was analyzed by using LDA. A total of 30 topics in each period were labeled based on the frequency of terms and the contents of the articles. These topics were plotted on a two-dimensional map using LDAvis and categorized based on their location and characteristics in the plots. Although research areas in some forms were persistent with which discovered in previous studies, they were crucial to the transition of the knowledge structure in LIS and had the following three features: (1) The Internet became the premise of research in LIS in 2015–2017. (2) Theoretical approach or empirical work can be considered as a factor in the transition of the knowledge structure in some categories. (3) The topic diversity of the five core LIS journals decreased from the 2000–2002 to 2015–2017.

Suggested Citation

  • Yosuke Miyata & Emi Ishita & Fang Yang & Michimasa Yamamoto & Azusa Iwase & Keiko Kurata, 2020. "Knowledge structure transition in library and information science: topic modeling and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 665-687, October.
  • Handle: RePEc:spr:scient:v:125:y:2020:i:1:d:10.1007_s11192-020-03657-5
    DOI: 10.1007/s11192-020-03657-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-020-03657-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-020-03657-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erjia Yan, 2015. "Research dynamics, impact, and dissemination: A topic-level analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(11), pages 2357-2372, November.
    2. Cassidy R. Sugimoto & Daifeng Li & Terrell G. Russell & S. Craig Finlay & Ying Ding, 2011. "The shifting sands of disciplinary development: Analyzing North American Library and Information Science dissertations using latent Dirichlet allocation," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(1), pages 185-204, January.
    3. Staša Milojević & Cassidy R. Sugimoto & Erjia Yan & Ying Ding, 2011. "The cognitive structure of Library and Information Science: Analysis of article title words," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(10), pages 1933-1953, October.
    4. Kun Lu & Dietmar Wolfram, 2012. "Measuring author research relatedness: A comparison of word-based, topic-based, and author cocitation approaches," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(10), pages 1973-1986, October.
    5. Cassidy R. Sugimoto & Daifeng Li & Terrell G. Russell & S. Craig Finlay & Ying Ding, 2011. "The shifting sands of disciplinary development: Analyzing North American Library and Information Science dissertations using latent Dirichlet allocation," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(1), pages 185-204, January.
    6. Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.
    7. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    8. Francesca De Battisti & Alfio Ferrara & Silvia Salini, 2015. "A decade of research in statistics: a topic model approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 413-433, May.
    9. Dangzhi Zhao & Andreas Strotmann, 2008. "Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic‐coupling analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 59(13), pages 2070-2086, November.
    10. Manika Lamba & Margam Madhusudhan, 2019. "Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 477-505, August.
    11. Karen E. Pettigrew & Lynne (E.F.) McKechnie, 2001. "The use of theory in information science research," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 52(1), pages 62-73.
    12. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    13. Howard D. White & Belver C. Griffith, 1981. "Author cocitation: A literature measure of intellectual structure," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 32(3), pages 163-171, May.
    14. Jeppe Nicolaisen & Tove Faber Frandsen, 2015. "Bibliometric evolution: Is the journal of the association for information science and technology transforming into a specialty Journal?," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(5), pages 1082-1085, May.
    15. Chen, Baitong & Tsutsui, Satoshi & Ding, Ying & Ma, Feicheng, 2017. "Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 11(4), pages 1175-1189.
    16. Staša Milojević & Cassidy R. Sugimoto & Erjia Yan & Ying Ding, 2011. "The cognitive structure of Library and Information Science: Analysis of article title words," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 62(10), pages 1933-1953, October.
    17. Kun Lu & Dietmar Wolfram, 2012. "Measuring author research relatedness: A comparison of word‐based, topic‐based, and author cocitation approaches," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(10), pages 1973-1986, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei‐Min Fan & Wei Jeng & Muh‐Chyun Tang, 2023. "Using data citation to define a knowledge domain: A case study of the Add‐Health dataset," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 81-98, January.
    2. Pertti Vakkari & Yu-Wei Chang & Kalervo Järvelin, 2022. "Largest contribution to LIS by external disciplines as measured by the characteristics of research articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4499-4522, August.
    3. Abhijit Thakuria & Dipen Deka, 2024. "A decadal study on identifying latent topics and research trends in open access LIS journals using topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3841-3869, July.
    4. Manuel A. Vázquez & Jorge Pereira-Delgado & Jesús Cid-Sueiro & Jerónimo Arenas-García, 2022. "Validation of scientific topic models using graph analysis and corpus metadata," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5441-5458, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhijit Thakuria & Dipen Deka, 2024. "A decadal study on identifying latent topics and research trends in open access LIS journals using topic modeling approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3841-3869, July.
    2. Pin Li & Guoli Yang & Chuanqi Wang, 2019. "Visual topical analysis of library and information science," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1753-1791, December.
    3. Chen, Guo & Xiao, Lu, 2016. "Selecting publication keywords for domain analysis in bibliometrics: A comparison of three methods," Journal of Informetrics, Elsevier, vol. 10(1), pages 212-223.
    4. Yu-Wei Chang, 2018. "Examining interdisciplinarity of library and information science (LIS) based on LIS articles contributed by non-LIS authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1589-1613, September.
    5. Yi Bu & Binglu Wang & Win-bin Huang & Shangkun Che & Yong Huang, 2018. "Using the appearance of citations in full text on author co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 275-289, July.
    6. Chaoqun Ni & Cassidy R. Sugimoto & Blaise Cronin, 2013. "Visualizing and comparing four facets of scholarly communication: producers, artifacts, concepts, and gatekeepers," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1161-1173, March.
    7. Yang, Siluo & Han, Ruizhen & Wolfram, Dietmar & Zhao, Yuehua, 2016. "Visualizing the intellectual structure of information science (2006–2015): Introducing author keyword coupling analysis," Journal of Informetrics, Elsevier, vol. 10(1), pages 132-150.
    8. Bo Wang & Shengbo Liu & Kun Ding & Zeyuan Liu & Jing Xu, 2014. "Identifying technological topics and institution-topic distribution probability for patent competitive intelligence analysis: a case study in LTE technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 685-704, October.
    9. Manika Lamba & Margam Madhusudhan, 2019. "Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 477-505, August.
    10. Wang, Feifei & Dong, Jiaxin & Lu, Wanzhao & Xu, Shuo, 2023. "Collaboration prediction based on multilayer all-author tripartite citation networks: A case study of gene editing," Journal of Informetrics, Elsevier, vol. 17(1).
    11. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    12. Tsung-Ming Hsiao & Kuang-hua Chen, 2020. "The dynamics of research subfields for library and information science: an investigation based on word bibliographic coupling," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 717-737, October.
    13. Erjia Yan, 2014. "Topic-based Pagerank: toward a topic-level scientific evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(2), pages 407-437, August.
    14. Carlos G. Figuerola & Francisco Javier García Marco & María Pinto, 2017. "Mapping the evolution of library and information science (1978–2014) using topic modeling on LISA," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1507-1535, September.
    15. Qian-Jin Zong & Hong-Zhou Shen & Qin-Jian Yuan & Xiao-Wei Hu & Zhi-Ping Hou & Shun-Guo Deng, 2013. "Doctoral dissertations of Library and Information Science in China: A co-word analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(2), pages 781-799, February.
    16. Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
    17. Sabrina Petersohn & Thomas Heinze, 2018. "Professionalization of bibliometric research assessment. Insights from the history of the Leiden Centre for Science and Technology Studies (CWTS)," Science and Public Policy, Oxford University Press, vol. 45(4), pages 565-578.
    18. Hao Wang & Sanhong Deng & Xinning Su, 2016. "A study on construction and analysis of discipline knowledge structure of Chinese LIS based on CSSCI," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1725-1759, December.
    19. Qian, Yue & Liu, Yu & Sheng, Quan Z., 2020. "Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence," Journal of Informetrics, Elsevier, vol. 14(3).
    20. Yan, Erjia, 2014. "Research dynamics: Measuring the continuity and popularity of research topics," Journal of Informetrics, Elsevier, vol. 8(1), pages 98-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:125:y:2020:i:1:d:10.1007_s11192-020-03657-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.