IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v115y2018i2d10.1007_s11192-018-2694-x.html
   My bibliography  Save this article

An integrated method for interdisciplinary topic identification and prediction: a case study on information science and library science

Author

Listed:
  • Kun Dong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Haiyun Xu

    (Chinese Academy of Sciences)

  • Rui Luo

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Ling Wei

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shu Fang

    (Chinese Academy of Sciences)

Abstract

Given that many frontiers and hotspots of science and technology are emerging from interdisciplines, the accurate identification and forecasting of interdisciplinary topics has become increasingly significant. Existing methods of interdisciplinary topic identification have their respective application fields, and each identification result can help researchers acquire partial characteristics of interdisciplinary topics. This paper offers an integrated method for identifying and predicting interdisciplinary topics from scientific literature. It integrates various methods, including co-occurrence networks analysis, high-TI terms analysis and burst detection, and offers an overall perspective into interdisciplinary topic identification. The results of the different methods are mutually confirmed and complemented, further overviewing the characteristics of the interdisciplinary field and highlighting the importance or potential of interdisciplinary topics. In this study, Information Science and Library Science is selected as a case study. The research has clearly shown that more accurate and comprehensive results can be achieved for interdisciplinary topic identification and prediction by employing this integrated method. Further, the integration of different methods has promising potential for application in knowledge discovery and scientific measurement in the future.

Suggested Citation

  • Kun Dong & Haiyun Xu & Rui Luo & Ling Wei & Shu Fang, 2018. "An integrated method for interdisciplinary topic identification and prediction: a case study on information science and library science," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 849-868, May.
  • Handle: RePEc:spr:scient:v:115:y:2018:i:2:d:10.1007_s11192-018-2694-x
    DOI: 10.1007/s11192-018-2694-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-018-2694-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-018-2694-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haiyun Xu & Ting Guo & Zenghui Yue & Lijie Ru & Shu Fang, 2016. "Interdisciplinary topics of information science: a study based on the terms interdisciplinarity index series," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 583-601, February.
    2. Hai-Yun Xu & Zeng-Hui Yue & Chao Wang & Kun Dong & Hong-Shen Pang & Zhengbiao Han, 2017. "Multi-source data fusion study in scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 773-792, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    2. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    3. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Huang & Yijie Cai & Erdong Zhao & Shengting Zhang & Yue Shu & Jiao Fan, 2022. "Measuring the interdisciplinarity of Information and Library Science interactions using citation analysis and semantic analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6733-6761, November.
    2. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    3. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    4. Kim, Hyeyoung & Park, Hyelin & Song, Min, 2022. "Developing a topic-driven method for interdisciplinarity analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    5. Manika Lamba & Margam Madhusudhan, 2019. "Mapping of topics in DESIDOC Journal of Library and Information Technology, India: a study," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 477-505, August.
    6. Mao, Jin & Liang, Zhentao & Cao, Yujie & Li, Gang, 2020. "Quantifying cross-disciplinary knowledge flow from the perspective of content: Introducing an approach based on knowledge memes," Journal of Informetrics, Elsevier, vol. 14(4).
    7. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Liu, Ziqiang & Yuan, Guoting, 2020. "Topic-linked innovation paths in science and technology," Journal of Informetrics, Elsevier, vol. 14(2).
    8. Juan Xie & Kaile Gong & Jiang Li & Qing Ke & Hyonchol Kang & Ying Cheng, 2019. "A probe into 66 factors which are possibly associated with the number of citations an article received," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1429-1454, June.
    9. Wang, Shiyun & Mao, Jin & Lu, Kun & Cao, Yujie & Li, Gang, 2021. "Understanding interdisciplinary knowledge integration through citance analysis: A case study on eHealth," Journal of Informetrics, Elsevier, vol. 15(4).
    10. Wooseok Jang & Heeyeul Kwon & Yongtae Park & Hakyeon Lee, 2018. "Predicting the degree of interdisciplinarity in academic fields: the case of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 231-254, July.
    11. Xu, Haiyun & Yue, Zenghui & Pang, Hongshen & Elahi, Ehsan & Li, Jing & Wang, Lu, 2022. "Integrative model for discovering linked topics in science and technology," Journal of Informetrics, Elsevier, vol. 16(2).
    12. Xu, Haiyun & Winnink, Jos & Yue, Zenghui & Zhang, Huiling & Pang, Hongshen, 2021. "Multidimensional Scientometric indicators for the detection of emerging research topics," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    13. Shengli Deng & Sudi Xia, 2020. "Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 489-513, July.
    14. Xie, Qing & Zhang, Xinyuan & Ding, Ying & Song, Min, 2020. "Monolingual and multilingual topic analysis using LDA and BERT embeddings," Journal of Informetrics, Elsevier, vol. 14(3).
    15. Hoang-Son Pham & Bram Vancraeynest & Hanne Poelmans & Sadia Vancauwenbergh & Amr Ali-Eldin, 2023. "Identifying interdisciplinary research in research projects," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(10), pages 5521-5544, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:115:y:2018:i:2:d:10.1007_s11192-018-2694-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.