An integrated approach for detecting and quantifying the topic evolutions of patent technology: a case study on graphene field
Author
Abstract
Suggested Citation
DOI: 10.1007/s11192-021-04000-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Ssu-Han & Huang, Mu-Hsuan & Chen, Dar-Zen, 2012. "Identifying and visualizing technology evolution: A case study of smart grid technology," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1099-1110.
- Jeong, Do-Heon & Song, Min, 2014. "Time gap analysis by the topic model-based temporal technique," Journal of Informetrics, Elsevier, vol. 8(3), pages 776-790.
- Jia Zheng & Zhi-yun Zhao & Xu Zhang & Dar-zen Chen & Mu-hsuan Huang & Xiao-ping Lei & Ze-yu Zhang & Yun-hua Zhao & Run-sheng Liu, 2011. "Industry evolution and key technologies in China based on patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 87(1), pages 175-188, April.
- Hui-Yun Sung & Hsi-Yin Yeh & Jin-Kwan Lin & Ssu-Han Chen, 2017. "A visualization tool of patent topic evolution using a growing cell structure neural network," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1267-1285, June.
- Euiseok Kim & Yongrae Cho & Wonjoon Kim, 2014. "Dynamic patterns of technological convergence in printed electronics technologies: patent citation network," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 975-998, February.
- Yi Zhang & Xiao Zhou & Alan L. Porter & Jose M. Vicente Gomila & An Yan, 2014. "Triple Helix innovation in China’s dye-sensitized solar cell industry: hybrid methods with semantic TRIZ and technology roadmapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(1), pages 55-75, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
- Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2022. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Papers 2201.07168, arXiv.org.
- Wencan Tian & Yongzhen Wang & Zhigang Hu & Ruonan Cai & Guangyao Zhang & Xianwen Wang, 2024. "Does Granger causality exist between article usage and publication counts? A topic-level time-series evidence from IEEE Xplore," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3285-3302, June.
- Wang, Xiaoguang & He, Jing & Huang, Han & Wang, Hongyu, 2022. "MatrixSim: A new method for detecting the evolution paths of research topics," Journal of Informetrics, Elsevier, vol. 16(4).
- Hengmin Zhu & Li Qian & Wang Qin & Jing Wei & Chao Shen, 2022. "Evolution analysis of online topics based on ‘word-topic’ coupling network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3767-3792, July.
- Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2023. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3313-3335, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sanghoon Lee & Wonjoon Kim, 2017. "The knowledge network dynamics in a mobile ecosystem: a patent citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 717-742, May.
- Zhou, Yuan & Dong, Fang & Kong, Dejing & Liu, Yufei, 2019. "Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 205-220.
- Huang, Ying & Li, Ruinan & Zou, Fang & Jiang, Lidan & Porter, Alan L. & Zhang, Lin, 2022. "Technology life cycle analysis: From the dynamic perspective of patent citation networks," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
- Munan Li, 2015. "A novel three-dimension perspective to explore technology evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1679-1697, December.
- Dejing Kong & Jianzhong Yang & Lingfeng Li, 2020. "Early identification of technological convergence in numerical control machine tool: a deep learning approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1983-2009, December.
- Arenal, Alberto & Armuña, Cristina & Feijoo, Claudio & Ramos, Sergio & Xu, Zimu & Moreno, Ana, 2020. "Innovation ecosystems theory revisited: The case of artificial intelligence in China," Telecommunications Policy, Elsevier, vol. 44(6).
- Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
- Weiwei Liu & Yuan Tao & Zhile Yang & Kexin Bi, 2019. "Exploring and Visualizing the Patent Collaboration Network: A Case Study of Smart Grid Field in China," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
- Slavo Radosevic & Esin Yoruk, 2014. "Are there global shifts in the world science base? Analysing the catching up and falling behind of world regions," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(3), pages 1897-1924, December.
- Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
- Sabrina L. Woltmann & Lars Alkærsig, 2018. "Tracing university–industry knowledge transfer through a text mining approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 449-472, October.
- Kim, Namil & Lee, Hyeokseong & Kim, Wonjoon & Lee, Hyunjong & Suh, Jong Hwan, 2015. "Dynamic patterns of industry convergence: Evidence from a large amount of unstructured data," Research Policy, Elsevier, vol. 44(9), pages 1734-1748.
- Zhang, Yi & Robinson, Douglas K.R. & Porter, Alan L. & Zhu, Donghua & Zhang, Guangquan & Lu, Jie, 2016.
"Technology roadmapping for competitive technical intelligence,"
Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 175-186.
- Yi Zhang & Douglas K. R. Robinson & Alan L. Porter & Donghua Zhu & Guangquan Zhang & Jie Lu, 2015. "Technology roadmapping for competitive technical intelligence," Post-Print hal-01276909, HAL.
- Qian, Yue & Liu, Yu & Sheng, Quan Z., 2020. "Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence," Journal of Informetrics, Elsevier, vol. 14(3).
- Zhao, Shengchao & Zeng, Deming & Li, Jian & Feng, Ke & Wang, Yao, 2023. "Quantity or quality: The roles of technology and science convergence on firm innovation performance," Technovation, Elsevier, vol. 126(C).
- Kim, Yong Jin & Lee, Duk Hee, 2020. "Technology convergence networks for flexible display application: A comparative analysis of latecomers and leaders," Japan and the World Economy, Elsevier, vol. 55(C).
- Juite Wang & Tzu-Yen Hsu, 2023. "Early discovery of emerging multi-technology convergence for analyzing technology opportunities from patent data: the case of smart health," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4167-4196, August.
- Joon Hyung Cho & Jungpyo Lee & So Young Sohn, 2021. "Predicting future technological convergence patterns based on machine learning using link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5413-5429, July.
- Sohrabi, Babak & Khalilijafarabad, Ahmad, 2018. "Systematic method for finding emergence research areas as data quality," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 280-287.
- Caviggioli, Federico, 2016. "Technology fusion: Identification and analysis of the drivers of technology convergence using patent data," Technovation, Elsevier, vol. 55, pages 22-32.
More about this item
Keywords
Topic evolution of patent technology; Topic life cycle; Technology entropy; Topic model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:126:y:2021:i:8:d:10.1007_s11192-021-04000-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.