IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i11d10.1007_s11192-023-04776-5.html
   My bibliography  Save this article

Identifying interdisciplinary topics and their evolution based on BERTopic

Author

Listed:
  • Zhongyi Wang

    (Central China Normal University)

  • Jing Chen

    (Central China Normal University)

  • Jiangping Chen

    (University of North Texas)

  • Haihua Chen

    (University of North Texas)

Abstract

Interdisciplinary topic reflects the knowledge exchange and integration between different disciplines. Analyzing its evolutionary path is beneficial for interdisciplinary research in identifying potential cooperative research direction and promoting the cross-integration of different disciplines. However, current studies on the evolution of interdisciplinary topics mainly focus on identifying interdisciplinary topics at the macro level. More analysis of the evolution process of interdisciplinary topics at the micro level is still needed. This paper proposes a framework for interdisciplinary topic identification and evolutionary analysis based on BERTopic to bridge the gap. The framework consists of four steps: (1) Extract the topics from the dataset using the BERTopic model. (2) Filter out the invalid global topics and stage topics based on lexical distribution and further filter out the invalid stage topics based on topic correlation. (3) Identify interdisciplinary topics based on disciplinary diversity and disciplinary cohesion. (4) Analyze the interdisciplinary topic evolution by inspecting the intensity and content in the evolution, and visualize the evolution using Sankey diagrams. Finally, We conduct an empirical study on a dataset collected from the Web of Science (WoS) in Library & Information Science (LIS) to evaluate the validity of the framework. From the dataset, we have identified two distinct types of interdisciplinary topics in LIS. Our findings suggest that the growth points of LIS mainly exist in the interdisciplinary research topics. Additionally, our analysis reveals that more and more interdisciplinary knowledge needs to be integrated to solve more complex problems. Mature interdisciplinary topics mainly formed from the internal core knowledge in LIS stimulated by external disciplinary knowledge, while promising interdisciplinary topics are still at the stage of internalizing and absorbing the knowledge of other disciplines. The dataset, the code for implementing the algorithms, and the complete experiment results will be released on GitHub at: https://github.com/haihua0913/IITE-BERT .

Suggested Citation

  • Zhongyi Wang & Jing Chen & Jiangping Chen & Haihua Chen, 2024. "Identifying interdisciplinary topics and their evolution based on BERTopic," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 7359-7384, November.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:11:d:10.1007_s11192-023-04776-5
    DOI: 10.1007/s11192-023-04776-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-023-04776-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-023-04776-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Xu & Yi Bu & Ying Ding & Sinan Yang & Hongli Zhang & Chen Yu & Lin Sun, 2018. "Understanding the formation of interdisciplinary research from the perspective of keyword evolution: a case study on joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(2), pages 973-995, November.
    2. Leydesdorff, Loet & Rafols, Ismael, 2011. "Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations," Journal of Informetrics, Elsevier, vol. 5(1), pages 87-100.
    3. Ismael Rafols & Martin Meyer, 2010. "Diversity and network coherence as indicators of interdisciplinarity: case studies in bionanoscience," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 263-287, February.
    4. Henry Small, 2010. "Maps of science as interdisciplinary discourse: co-citation contexts and the role of analogy," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(3), pages 835-849, June.
    5. Kun Dong & Haiyun Xu & Rui Luo & Ling Wei & Shu Fang, 2018. "An integrated method for interdisciplinary topic identification and prediction: a case study on information science and library science," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 849-868, May.
    6. Chen, Baitong & Tsutsui, Satoshi & Ding, Ying & Ma, Feicheng, 2017. "Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval," Journal of Informetrics, Elsevier, vol. 11(4), pages 1175-1189.
    7. Haiyun Xu & Ting Guo & Zenghui Yue & Lijie Ru & Shu Fang, 2016. "Interdisciplinary topics of information science: a study based on the terms interdisciplinarity index series," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 583-601, February.
    8. Loet Leydesdorff & Iina Hellsten, 2006. "Measuring the meaning of words in contexts: An automated analysis of controversies about 'Monarch butterflies,' 'Frankenfoods,' and 'stem cells'," Scientometrics, Springer;Akadémiai Kiadó, vol. 67(2), pages 231-258, May.
    9. Qian, Yue & Liu, Yu & Sheng, Quan Z., 2020. "Understanding hierarchical structural evolution in a scientific discipline: A case study of artificial intelligence," Journal of Informetrics, Elsevier, vol. 14(3).
    10. Min Song & Go Eun Heo & Su Yeon Kim, 2014. "Analyzing topic evolution in bioinformatics: investigation of dynamics of the field with conference data in DBLP," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(1), pages 397-428, October.
    11. Leydesdorff, Loet & Wagner, Caroline S. & Bornmann, Lutz, 2019. "Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient," Journal of Informetrics, Elsevier, vol. 13(1), pages 255-269.
    12. Xiaolan Wu & Chengzhi Zhang, 2019. "Finding high-impact interdisciplinary users based on friend discipline distribution in academic social networking sites," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1017-1035, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengzhi Zhang & Philipp Mayr & Wei Lu & Yi Zhang, 2024. "An editorial note on extraction and evaluation of knowledge entities from scientific documents," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 7169-7174, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhichao Ba & Yujie Cao & Jin Mao & Gang Li, 2019. "A hierarchical approach to analyzing knowledge integration between two fields—a case study on medical informatics and computer science," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1455-1486, June.
    2. Keungoui Kim & Dieter F. Kogler & Sira Maliphol, 2024. "Identifying interdisciplinary emergence in the science of science: combination of network analysis and BERTopic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    3. Seyyed Reza Taher Harikandeh & Sadegh Aliakbary & Soroush Taheri, 2023. "An embedding approach for analyzing the evolution of research topics with a case study on computer science subdomains," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1567-1582, March.
    4. Wolfgang Glänzel & Koenraad Debackere, 2022. "Various aspects of interdisciplinarity in research and how to quantify and measure those," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5551-5569, September.
    5. Zhao, Yi & Liu, Lifan & Zhang, Chengzhi, 2022. "Is coronavirus-related research becoming more interdisciplinary? A perspective of co-occurrence analysis and diversity measure of scientific articles," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    6. Giulio Giacomo Cantone, 2024. "How to measure interdisciplinary research? A systemic design for the model of measurement," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4937-4982, August.
    7. Kim, Hyeyoung & Park, Hyelin & Song, Min, 2022. "Developing a topic-driven method for interdisciplinarity analysis," Journal of Informetrics, Elsevier, vol. 16(2).
    8. Alfonso Ávila-Robinson & Cristian Mejia & Shintaro Sengoku, 2021. "Are bibliometric measures consistent with scientists’ perceptions? The case of interdisciplinarity in research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7477-7502, September.
    9. Chen, Shiji & Qiu, Junping & Arsenault, Clément & Larivière, Vincent, 2021. "Exploring the interdisciplinarity patterns of highly cited papers," Journal of Informetrics, Elsevier, vol. 15(1).
    10. Liang Hu & Win-bin Huang & Yi Bu, 2024. "Interdisciplinary research attracts greater attention from policy documents: evidence from COVID-19," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    11. Seolmin Yang & So Young Kim, 2023. "Knowledge-integrated research is more disruptive when supported by homogeneous funding sources: a case of US federally funded research in biomedical and life sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3257-3282, June.
    12. Junsheng Zhang & Xiaoping Sun & Zhihui Liu, 2024. "Measuring the evolving stage of temporal distribution of research topic keyword in scientific literature by research heat curve," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(11), pages 7287-7328, November.
    13. Shengli Deng & Sudi Xia, 2020. "Mapping the interdisciplinarity in information behavior research: a quantitative study using diversity measure and co-occurrence analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(1), pages 489-513, July.
    14. Yi Bu & Mengyang Li & Weiye Gu & Win‐bin Huang, 2021. "Topic diversity: A discipline scheme‐free diversity measurement for journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(5), pages 523-539, May.
    15. Jielan Ding & Zhesi Shen & Per Ahlgren & Tobias Jeppsson & David Minguillo & Johan Lyhagen, 2021. "The link between ethnic diversity and scientific impact: the mediating effect of novelty and audience diversity," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7759-7810, September.
    16. Mao, Jin & Liang, Zhentao & Cao, Yujie & Li, Gang, 2020. "Quantifying cross-disciplinary knowledge flow from the perspective of content: Introducing an approach based on knowledge memes," Journal of Informetrics, Elsevier, vol. 14(4).
    17. Shogo Katoh & Rick (H.L.) Aalbers & Shintaro Sengoku, 2021. "Effects and Interactions of Researcher’s Motivation and Personality in Promoting Interdisciplinary and Transdisciplinary Research," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    18. Jingjing Ren & Fang Wang & Minglu Li, 2023. "Dynamics and characteristics of interdisciplinary research in scientific breakthroughs: case studies of Nobel-winning research in the past 120 years," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4383-4419, August.
    19. Jian Xu & Ying Ding & Yi Bu & Shuqing Deng & Chen Yu & Yimin Zou & Andrew Madden, 2019. "Interdisciplinary scholarly communication: an exploratory study for the field of joint attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1597-1619, June.
    20. Qiang Gao & Xiao Huang & Ke Dong & Zhentao Liang & Jiang Wu, 2022. "Semantic-enhanced topic evolution analysis: a combination of the dynamic topic model and word2vec," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1543-1563, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:11:d:10.1007_s11192-023-04776-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.