IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v90y2012i2d10.1007_s11192-011-0543-2.html
   My bibliography  Save this article

Detecting signals of new technological opportunities using semantic patent analysis and outlier detection

Author

Listed:
  • Janghyeok Yoon

    (Korea Institute of Intellectual Property)

  • Kwangsoo Kim

    (Pohang University of Science and Technology)

Abstract

In the competitive business environment, early identification of technological opportunities is crucial for technology strategy formulation and research and development planning. There exist previous studies that identify technological directions or areas from a broad view for technological opportunities, while few studies have researched a way to detect distinctive patents that can act as new technological opportunities at the individual patent level. This paper proposes a method of detecting new technological opportunities by using subject–action–object (SAO)-based semantic patent analysis and outlier detection. SAO structures are syntactically ordered sentences that can be automatically extracted by natural language processing of patent text; they explicitly show the structural relationships among technological components in a patent, and thus encode key findings of inventions and the expertise of inventors. Therefore, the proposed method allows quantification of structural dissimilarities among patents. We use outlier detection to identify unusual or distinctive patents in a given technology area; some of these outlier patents may represent new technological opportunities. The proposed method is illustrated using patents related to organic photovoltaic cells. We expect that this method can be incorporated into the research and development process for early identification of technological opportunities.

Suggested Citation

  • Janghyeok Yoon & Kwangsoo Kim, 2012. "Detecting signals of new technological opportunities using semantic patent analysis and outlier detection," Scientometrics, Springer;Akadémiai Kiadó, vol. 90(2), pages 445-461, February.
  • Handle: RePEc:spr:scient:v:90:y:2012:i:2:d:10.1007_s11192-011-0543-2
    DOI: 10.1007/s11192-011-0543-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-011-0543-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-011-0543-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janghyeok Yoon & Sungchul Choi & Kwangsoo Kim, 2011. "Invention property-function network analysis of patents: a case of silicon-based thin film solar cells," Scientometrics, Springer;Akadémiai Kiadó, vol. 86(3), pages 687-703, March.
    2. J. Kruskal, 1964. "Nonmetric multidimensional scaling: A numerical method," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 115-129, June.
    3. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    4. Radauer, Alfred & Walter, Lothar, 2010. "Elements of good practice for providers of publicly funded patent information services for SMEs - Selected and amended results of a benchmarking exercise," World Patent Information, Elsevier, vol. 32(3), pages 237-245, September.
    5. Karki, M. M. S., 1997. "Patent citation analysis: A policy analysis tool," World Patent Information, Elsevier, vol. 19(4), pages 269-272, December.
    6. Park, Beum-Jo, 2002. "An Outlier Robust GARCH Model and Forecasting Volatility of Exchange Rate Returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(5), pages 381-393, August.
    7. Franses, Philip Hans & Kloek, Teun & Lucas, Andre, 1998. "Outlier robust analysis of long-run marketing effects for weekly scanning data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 293-315, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janghyeok Yoon & Kwangsoo Kim, 2011. "Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(1), pages 213-228, July.
    2. Lee, Changyong & Cho, Yangrae & Seol, Hyeonju & Park, Yongtae, 2012. "A stochastic patent citation analysis approach to assessing future technological impacts," Technological Forecasting and Social Change, Elsevier, vol. 79(1), pages 16-29.
    3. Altuntas, Serkan & Dereli, Turkay & Kusiak, Andrew, 2015. "Analysis of patent documents with weighted association rules," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 249-262.
    4. Eun Han & So Sohn, 2015. "Patent valuation based on text mining and survival analysis," The Journal of Technology Transfer, Springer, vol. 40(5), pages 821-839, October.
    5. Dibiaggio, Ludovic & Nasiriyar, Maryam & Nesta, Lionel, 2014. "Substitutability and complementarity of technological knowledge and the inventive performance of semiconductor companies," Research Policy, Elsevier, vol. 43(9), pages 1582-1593.
    6. Choe, Hochull & Lee, Duk Hee & Seo, Il Won & Kim, Hee Dae, 2013. "Patent citation network analysis for the domain of organic photovoltaic cells: Country, institution, and technology field," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 492-505.
    7. Jang, Hyun Jin & Woo, Han-Gyun & Lee, Changyong, 2017. "Hawkes process-based technology impact analysis," Journal of Informetrics, Elsevier, vol. 11(2), pages 511-529.
    8. Kang, Kiyeon & Sohn, So Young, 2016. "Evaluating the patenting activities of pharmaceutical research organizations based on new technology indices," Journal of Informetrics, Elsevier, vol. 10(1), pages 74-81.
    9. Jurriën Bakker & Dennis Verhoeven & Lin Zhang & Bart Van Looy, 2016. "Patent citation indicators: One size fits all?," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 187-211, January.
    10. Zhenfu Li & Yixuan Wang & Zhao Deng, 2022. "Research on Evolution Characteristics and Factors of Nordic Green Patent Citation Network," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    11. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    12. Scott D. Bass & Lukasz A. Kurgan, 2010. "Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 217-241, February.
    13. Ha, Sung Ho & Liu, Weina & Cho, Hune & Kim, Sang Hyun, 2015. "Technological advances in the fuel cell vehicle: Patent portfolio management," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 277-289.
    14. Dar-Zen Chen & Wen-Yau Cathy Lin & Mu-Hsuan Huang, 2007. "Using Essential Patent Index and Essential Technological Strength to evaluate industrial technological innovation competitiveness," Scientometrics, Springer;Akadémiai Kiadó, vol. 71(1), pages 101-116, April.
    15. Janghyeok Yoon & Hyunseok Park & Kwangsoo Kim, 2013. "Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 313-331, January.
    16. Yoon, Jungsub & Oh, Yoonhwan & Lee, Jeong-Dong, 2017. "The impact of policy consistency on technological competitiveness: A study on OECD countries," Energy Policy, Elsevier, vol. 108(C), pages 425-434.
    17. Elizabeth Webster & Paul H. Jensen & Alfons Palangkaraya, 2014. "Patent examination outcomes and the national treatment principle," RAND Journal of Economics, RAND Corporation, vol. 45(2), pages 449-469, June.
    18. repec:hal:spmain:info:hdl:2441/43aq8ffdqb82sbffkv69bt1eaa is not listed on IDEAS
    19. repec:spo:wpmain:info:hdl:2441/43aq8ffdqb82sbffkv69bt1eaa is not listed on IDEAS
    20. Chandra, Praveena & Dong, Andy, 2018. "The relation between knowledge accumulation and technical value in interdisciplinary technologies," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 235-244.
    21. Jos� Lobo & Charlotta Mellander & Kevin Stolarick & Deborah Strumsky, 2014. "The Inventive, the Educated and the Creative: How Do They Affect Metropolitan Productivity?," Industry and Innovation, Taylor & Francis Journals, vol. 21(2), pages 155-177, February.
    22. Beniaich, Adnane & Guimarães, Danielle Vieira & Avanzi, Junior Cesar & Silva, Bruno Montoani & Acuña-Guzman, Salvador Francisco & dos Santos, Wharley Pereira & Silva, Marx Leandro Naves, 2023. "Spontaneous vegetation as an alternative to cover crops in olive orchards reduces water erosion and improves soil physical properties under tropical conditions," Agricultural Water Management, Elsevier, vol. 279(C).

    More about this item

    Keywords

    Technological opportunity; Outlier detection; Patent mining; Subject–action–object (SAO) structure; Semantic patent similarity; Multidimensional scaling (MDS); Research and development (R&D) planning;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:90:y:2012:i:2:d:10.1007_s11192-011-0543-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.