IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v46y2024i3d10.1007_s00291-023-00737-9.html
   My bibliography  Save this article

Evaluation of stochastic flow lines with provisioning of auxiliary material

Author

Listed:
  • Stefan Helber

    (Leibniz University Hannover)

  • Carolin Kellenbrink

    (Leibniz University Hannover)

  • Insa Südbeck

    (Leibniz University Hannover)

Abstract

Flow lines are often used to perform assembly operations in multi-stage processes. During these assembly operations, components that are relatively small, compared to the work pieces travelling down the flow line, are mounted to the work pieces at a given stage. Those components, or more generally, any kind of auxiliary material, are provisioned to the corresponding production stage in a repetitive but not necessarily deterministic manner using a certain delivery frequency, each time filling the local storage up to a predetermined order-up-to level. Just like random processing times, machine failures, and repairs, the randomness of the provisioning process can impact the long-term throughput of such a flow line. In this paper, we develop a fast and accurate analytical performance evaluation method to estimate the long-term throughput of a Markovian flow line of this type for the practically important case of limited buffer capacities between the production stages. We first give an exact characterization of a two-machine line of that type and show how to determine system state probabilities and aggregate performance measures. Furthermore, we show how to use this two-machine model as the building block of an approximate decomposition approach for longer flow lines. As opposed to previous decomposition approaches, even the state space of the two-machine lines can become so large that an exact solution of the Markov chains can become impractical. We hence show how to set up, train, and use an artificial neural network to replace the Markov chain solver embedded in the decomposition approach, which then leads to an accurate and extremely fast flow line evaluation tool. The proposed methodology is evaluated by a comparison with simulation results and used to characterize the structural patterns describing the behaviour of flow lines of this type. The method can be used to systematically consider the combined impact of the delivery frequency and the local order-up-to levels for the auxiliary material when designing a flow line of this type.

Suggested Citation

  • Stefan Helber & Carolin Kellenbrink & Insa Südbeck, 2024. "Evaluation of stochastic flow lines with provisioning of auxiliary material," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 669-708, September.
  • Handle: RePEc:spr:orspec:v:46:y:2024:i:3:d:10.1007_s00291-023-00737-9
    DOI: 10.1007/s00291-023-00737-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-023-00737-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-023-00737-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Emde & Malte Fliedner & Nils Boysen, 2012. "Optimally loading tow trains for just-in-time supply of mixed-model assembly lines," IISE Transactions, Taylor & Francis Journals, vol. 44(2), pages 121-135.
    2. Papadopoulos, H. T. & Heavey, C., 1996. "Queueing theory in manufacturing systems analysis and design: A classification of models for production and transfer lines," European Journal of Operational Research, Elsevier, vol. 92(1), pages 1-27, July.
    3. Baller, Reinhard & Hage, Steffen & Fontaine, Pirmin & Spinler, Stefan, 2020. "The assembly line feeding problem: An extended formulation with multiple line feeding policies and a case study," International Journal of Production Economics, Elsevier, vol. 222(C).
    4. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    5. Stanley B. Gershwin, 1987. "An Efficient Decomposition Method for the Approximate Evaluation of Tandem Queues with Finite Storage Space and Blocking," Operations Research, INFORMS, vol. 35(2), pages 291-305, April.
    6. Emde, Simon & Fliedner, Malte & Boysen, Nils, 2012. "Optimally loading tow trains for just-in-time supply of mixed-model assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79434, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.
    8. Tancrez, Jean-Sebastien, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," LIDAM Reprints CORE 3127, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Michael Manitz, 2015. "Analysis of assembly/disassembly queueing networks with blocking after service and general service times," Annals of Operations Research, Springer, vol. 226(1), pages 417-441, March.
    10. Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
    11. Sarah Hudson & Tom McNamara & Sabry Shaaban, 2015. "Unbalanced lines: where are we now?," International Journal of Production Research, Taylor & Francis Journals, vol. 53(6), pages 1895-1911, March.
    12. Boysen, Nils & Emde, Simon, 2014. "Scheduling the part supply of mixed-model assembly lines in line-integrated supermarkets," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79439, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Julia Mindlina & Horst Tempelmeier, 2022. "Performance analysis and optimisation of stochastic flow lines with limited material supply," International Journal of Production Research, Taylor & Francis Journals, vol. 60(17), pages 5293-5306, September.
    14. Helber, Stefan, 1998. "Decomposition of unreliable assembly/disassembly networks with limited buffer capacity and random processing times," European Journal of Operational Research, Elsevier, vol. 109(1), pages 24-42, August.
    15. Emde, Simon & Boysen, Nils, 2012. "Optimally routing and scheduling tow trains for JIT-supply of mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 217(2), pages 287-299.
    16. Boysen, Nils & Emde, Simon, 2014. "Scheduling the part supply of mixed-model assembly lines in line-integrated supermarkets," European Journal of Operational Research, Elsevier, vol. 239(3), pages 820-829.
    17. Diomidis Spinellis & Michael J. Vidalis & Michael E. J. O'Kelly & Chrissoleon T. Papadopoulos, 2009. "Analysis and Design of Discrete Part Production Lines," Springer Optimization and Its Applications, Springer, number 978-0-387-89494-2, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.
    2. Simon Emde & Lukas Polten, 2019. "Sequencing assembly lines to facilitate synchronized just-in-time part supply," Journal of Scheduling, Springer, vol. 22(6), pages 607-621, December.
    3. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    4. Kiesmüller, G.P. & Sachs, F.E., 2020. "Spare parts or buffer? How to design a transfer line with unreliable machines," European Journal of Operational Research, Elsevier, vol. 284(1), pages 121-134.
    5. Jean-Sébastien Tancrez, 2020. "A decomposition method for assembly/disassembly systems with blocking and general distributions," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 272-296, June.
    6. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    7. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    8. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," European Journal of Operational Research, Elsevier, vol. 306(2), pages 828-848.
    9. Bock, Stefan, 2015. "Solving the traveling repairman problem on a line with general processing times and deadlines," European Journal of Operational Research, Elsevier, vol. 244(3), pages 690-703.
    10. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    11. Tobias Kreiter & Ulrich Pferschy, 2020. "Integer programming models versus advanced planning business software for a multi-level mixed-model assembly line problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1141-1177, September.
    12. Simon Emde & Michael Schneider, 2018. "Just-In-Time Vehicle Routing for In-House Part Feeding to Assembly Lines," Transportation Science, INFORMS, vol. 52(3), pages 657-672, June.
    13. Bock, Stefan, 2020. "Optimally solving a versatile Traveling Salesman Problem on tree networks with soft due dates and multiple congestion scenarios," European Journal of Operational Research, Elsevier, vol. 283(3), pages 863-882.
    14. Stefan Bock, 2016. "Finding optimal tour schedules on transportation paths under extended time window constraints," Journal of Scheduling, Springer, vol. 19(5), pages 527-546, October.
    15. Adenipekun, Ebenezer Olatunde & Limère, Veronique & Schmid, Nico André, 2022. "The impact of transportation optimisation on assembly line feeding," Omega, Elsevier, vol. 107(C).
    16. Beixin Xia & Binghai Zhou & Ci Chen & Lifeng Xi, 2016. "A generalized-exponential decomposition method for the analysis of inhomogeneous assembly/disassembly systems with unreliable machines and finite buffers," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 765-779, August.
    17. Daria Battini & Nils Boysen & Simon Emde, 2013. "Just-in-Time supermarkets for part supply in the automobile industry," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 24(2), pages 209-217, July.
    18. Simon Emde, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 321-345, January.
    19. Masood Fathi & Victoria Rodríguez & Dalila B.M.M. Fontes & Maria Jesus Alvarez, 2016. "A modified particle swarm optimisation algorithm to solve the part feeding problem at assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 878-893, February.
    20. Andrea Matta & Francesca Simone, 2016. "Analysis of two-machine lines with finite buffer, operation-dependent and time-dependent failure modes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1850-1862, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:46:y:2024:i:3:d:10.1007_s00291-023-00737-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.