IDEAS home Printed from https://ideas.repec.org/b/spr/spopap/978-0-387-89494-2.html
   My bibliography  Save this book

Analysis and Design of Discrete Part Production Lines

Author

Listed:
  • Diomidis Spinellis
  • Michael J. Vidalis
  • Michael E. J. O'Kelly
  • Chrissoleon T. Papadopoulos

Abstract

No abstract is available for this item.

Individual chapters are listed in the "Chapters" tab

Suggested Citation

  • Diomidis Spinellis & Michael J. Vidalis & Michael E. J. O'Kelly & Chrissoleon T. Papadopoulos, 2009. "Analysis and Design of Discrete Part Production Lines," Springer Optimization and Its Applications, Springer, number 978-0-387-89494-2, December.
  • Handle: RePEc:spr:spopap:978-0-387-89494-2
    DOI: 10.1007/978-0-387-89494-2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew B. Bernard & J. Bradford Jensen & Stephen J. Redding & Peter K. Schott, 2012. "The Empirics of Firm Heterogeneity and International Trade," Annual Review of Economics, Annual Reviews, vol. 4(1), pages 283-313, July.
    2. Angelos Kourepis & Alexandros Diamantidis & Stylianos Koukoumialos, 2022. "Exact analysis of a push–pull system with multiple non identical retailers, a distribution center and multiple non identical unreliable suppliers with supply disruptions," Operational Research, Springer, vol. 22(5), pages 4801-4827, November.
    3. Mohammad Reza Bazargan-Lari & Sharareh Taghipour & Arash Zaretalab & Mani Sharifi, 2022. "Production scheduling optimization for parallel machines subject to physical distancing due to COVID-19 pandemic," Operations Management Research, Springer, vol. 15(1), pages 503-527, June.
    4. Rodríguez-Castelán, Carlos & López-Calva, Luis Felipe & Barriga-Cabanillas, Oscar, 2023. "Market concentration, trade exposure, and firm productivity in developing countries: Evidence from Mexico," World Development, Elsevier, vol. 165(C).
    5. Andrea Matta & Francesca Simone, 2016. "Analysis of two-machine lines with finite buffer, operation-dependent and time-dependent failure modes," International Journal of Production Research, Taylor & Francis Journals, vol. 54(6), pages 1850-1862, March.
    6. Konstantinos S. Boulas & Georgios D. Dounias & Chrissoleon T. Papadopoulos, 2023. "A hybrid evolutionary algorithm approach for estimating the throughput of short reliable approximately balanced production lines," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 823-852, February.
    7. Dang Trinh Nguyen & Quoc Bao Duong & Eric Zamai & Muhammad Kashif Shahzad, 2016. "Fault diagnosis for the complex manufacturing system," Journal of Risk and Reliability, , vol. 230(2), pages 178-194, April.
    8. Huynh, Linh & Hoang, Hien & Tran, Hung, 2020. "Does FDI enhance provincial productivity? A panel data analysis in Vietnam," MPRA Paper 117620, University Library of Munich, Germany, revised Aug 2021.
    9. Lei Li & YanLing Qian & Yong Min Yang & Kai Du, 2016. "A fast algorithm for buffer allocation problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3243-3255, June.
    10. James MacGregor Smith, 2018. "Simultaneous buffer and service rate allocation in open finite queueing networks," IISE Transactions, Taylor & Francis Journals, vol. 50(3), pages 203-216, March.
    11. Lei Li & YanLing Qian & Kai Du & YongMin Yang, 2016. "Analysis of approximately balanced production lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 647-664, February.
    12. Sachs, F.E. & Helber, S. & Kiesmüller, G.P., 2022. "Evaluation of Unreliable Flow Lines with Limited Buffer Capacities and Spare Part Provisioning," European Journal of Operational Research, Elsevier, vol. 302(2), pages 544-559.
    13. Ziwei Lin & Nicla Frigerio & Andrea Matta & Shichang Du, 2021. "Multi-fidelity surrogate-based optimization for decomposed buffer allocation problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 223-253, March.

    Book Chapters

    The following chapters of this book are listed in IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spopap:978-0-387-89494-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.