IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v217y2012i2p287-299.html
   My bibliography  Save this article

Optimally routing and scheduling tow trains for JIT-supply of mixed-model assembly lines

Author

Listed:
  • Emde, Simon
  • Boysen, Nils

Abstract

In recent years, more and more automobile producers adopted the supermarket-concept to enable a flexible and reliable Just-in-Time (JIT) part supply of their mixed-model assembly lines. Within this concept, a supermarket is a decentralized in-house logistics area where parts are intermediately stored and then loaded on small tow trains. These tow trains travel across the shop floor on specific routes to make frequent small-lot deliveries which are needed by the stations of the line. To enable a reliable part supply in line with the JIT-principle, the interdependent problems of routing, that is, partitioning stations to be supplied among tow trains, and scheduling, i.e., deciding on the start times of each tow train’s tours through its assigned stations, need to be solved. This paper introduces an exact solution procedure which solves both problems simultaneously in polynomial runtime. Additionally, management implications regarding the trade-off between number and capacity of tow trains and in-process inventory near the line are investigated within a comprehensive computational study.

Suggested Citation

  • Emde, Simon & Boysen, Nils, 2012. "Optimally routing and scheduling tow trains for JIT-supply of mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 217(2), pages 287-299.
  • Handle: RePEc:eee:ejores:v:217:y:2012:i:2:p:287-299
    DOI: 10.1016/j.ejor.2011.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711008162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2011.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boysen, Nils & Fliedner, Malte, 2010. "Cross dock scheduling: Classification, literature review and research agenda," Omega, Elsevier, vol. 38(6), pages 413-422, December.
    2. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    3. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    4. Angelelli, Enrico & Grazia Speranza, Maria, 2002. "The periodic vehicle routing problem with intermediate facilities," European Journal of Operational Research, Elsevier, vol. 137(2), pages 233-247, March.
    5. Baita, Flavio & Ukovich, Walter & Pesenti, Raffaele & Favaretto, Daniela, 1998. "Dynamic routing-and-inventory problems: a review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(8), pages 585-598, November.
    6. Vishal Gaur & Marshall L. Fisher, 2004. "A Periodic Inventory Routing Problem at a Supermarket Chain," Operations Research, INFORMS, vol. 52(6), pages 813-822, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    2. Masood Fathi & Morteza Ghobakhloo, 2020. "Enabling Mass Customization and Manufacturing Sustainability in Industry 4.0 Context: A Novel Heuristic Algorithm for in-Plant Material Supply Optimization," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    3. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    4. Bock, Stefan, 2020. "Optimally solving a versatile Traveling Salesman Problem on tree networks with soft due dates and multiple congestion scenarios," European Journal of Operational Research, Elsevier, vol. 283(3), pages 863-882.
    5. Daria Battini & Nils Boysen & Simon Emde, 2013. "Just-in-Time supermarkets for part supply in the automobile industry," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 24(2), pages 209-217, July.
    6. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    7. Adenipekun, Ebenezer Olatunde & Limère, Veronique & Schmid, Nico André, 2022. "The impact of transportation optimisation on assembly line feeding," Omega, Elsevier, vol. 107(C).
    8. Simon Emde & Michael Schneider, 2018. "Just-In-Time Vehicle Routing for In-House Part Feeding to Assembly Lines," Transportation Science, INFORMS, vol. 52(3), pages 657-672, June.
    9. Boysen, Nils & Emde, Simon, 2014. "Scheduling the part supply of mixed-model assembly lines in line-integrated supermarkets," European Journal of Operational Research, Elsevier, vol. 239(3), pages 820-829.
    10. Simon Emde, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 321-345, January.
    11. Stefan Bock, 2016. "Finding optimal tour schedules on transportation paths under extended time window constraints," Journal of Scheduling, Springer, vol. 19(5), pages 527-546, October.
    12. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," European Journal of Operational Research, Elsevier, vol. 306(2), pages 828-848.
    13. Zenker, Michael & Emde, Simon & Boysen, Nils, 2016. "Cyclic inventory routing in a line-shaped network," European Journal of Operational Research, Elsevier, vol. 250(1), pages 164-178.
    14. Bock, Stefan, 2015. "Solving the traveling repairman problem on a line with general processing times and deadlines," European Journal of Operational Research, Elsevier, vol. 244(3), pages 690-703.
    15. Maurizio Faccio & Mauro Gamberi & Alessandro Persona & Alberto Regattieri & Fabio Sgarbossa, 2013. "Design and simulation of assembly line feeding systems in the automotive sector using supermarket, kanbans and tow trains: a general framework," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 24(2), pages 187-208, July.
    16. Hanson, Robin & Finnsgård, Christian, 2014. "Impact of unit load size on in-plant materials supply efficiency," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 46-52.
    17. Simon Emde & Lukas Polten, 2019. "Sequencing assembly lines to facilitate synchronized just-in-time part supply," Journal of Scheduling, Springer, vol. 22(6), pages 607-621, December.
    18. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    19. C. Briand & Y. He & S. U. Ngueveu, 2018. "Energy-efficient planning for supplying assembly lines with vehicles," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 387-414, December.
    20. Emde, Simon & Gendreau, Michel, 2017. "Scheduling in-house transport vehicles to feed parts to automotive assembly lines," European Journal of Operational Research, Elsevier, vol. 260(1), pages 255-267.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    2. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    3. Zhiping Zuo & Yanhui Li & Jing Fu & Jianlin Wu, 2019. "Human Resource Scheduling Model and Algorithm with Time Windows and Multi-Skill Constraints," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    4. Lin, Yen-Hung & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2011. "A logistics model for emergency supply of critical items in the aftermath of a disaster," Socio-Economic Planning Sciences, Elsevier, vol. 45(4), pages 132-145, December.
    5. Letchford, Adam N. & Salazar-González, Juan-José, 2019. "The Capacitated Vehicle Routing Problem: Stronger bounds in pseudo-polynomial time," European Journal of Operational Research, Elsevier, vol. 272(1), pages 24-31.
    6. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    7. Baozhen Yao & Qianqian Yan & Mengjie Zhang & Yunong Yang, 2017. "Improved artificial bee colony algorithm for vehicle routing problem with time windows," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-18, September.
    8. Kuo, Tsai Chi & Chen, Gary Yu-Hsin & Wang, Miao Ling & Ho, Ming Way, 2014. "Carbon footprint inventory route planning and selection of hot spot suppliers," International Journal of Production Economics, Elsevier, vol. 150(C), pages 125-139.
    9. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    10. Karina Thiebaut & Artur Pessoa, 2023. "Approximating the chance-constrained capacitated vehicle routing problem with robust optimization," 4OR, Springer, vol. 21(3), pages 513-531, September.
    11. Shengbin Wang & Weizhen Rao & Yuan Hong, 2020. "A distance matrix based algorithm for solving the traveling salesman problem," Operational Research, Springer, vol. 20(3), pages 1505-1542, September.
    12. Frank, Markus & Ostermeier, Manuel & Holzapfel, Andreas & Hübner, Alexander & Kuhn, Heinrich, 2021. "Optimizing routing and delivery patterns with multi-compartment vehicles," European Journal of Operational Research, Elsevier, vol. 293(2), pages 495-510.
    13. Hadi Jahangir & Mohammad Mohammadi & Seyed Hamid Reza Pasandideh & Neda Zendehdel Nobari, 2019. "Comparing performance of genetic and discrete invasive weed optimization algorithms for solving the inventory routing problem with an incremental delivery," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2327-2353, August.
    14. Ioannou, Petros & Giuliano, Genevieve & Dessouky, Maged & Chen, Pengfei & Dexter, Sue, 2020. "Freight Load Balancing and Efficiencies in Alternative Fuel Freight Modes," Institute of Transportation Studies, Working Paper Series qt3ns4b894, Institute of Transportation Studies, UC Davis.
    15. Michael Khachay & Yuri Ogorodnikov & Daniel Khachay, 2021. "Efficient approximation of the metric CVRP in spaces of fixed doubling dimension," Journal of Global Optimization, Springer, vol. 80(3), pages 679-710, July.
    16. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    17. Tânia Rodrigues Pereira Ramos & Maria Isabel Gomes & Ana Paula Barbosa-Póvoa, 2020. "A new matheuristic approach for the multi-depot vehicle routing problem with inter-depot routes," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 75-110, March.
    18. D. G. N. D. Jayarathna & G. H. J. Lanel & Z. A. M. S. Juman, 2022. "Industrial vehicle routing problem: a case study," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-27, December.
    19. Shih-Che Lo & Ying-Lin Chuang, 2023. "Vehicle Routing Optimization with Cross-Docking Based on an Artificial Immune System in Logistics Management," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    20. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:217:y:2012:i:2:p:287-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.